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Understanding Independence: Common ancestors

(ire)
@am) - Comoe >
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@ alarm and smoke are
dependent

@ alarm and smoke are
independent given fire

@ Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.
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Understanding Independence: Chain

@ alarm and report are

dependent
@ alarm and report are
independent given

@ leaving
@ Intuitively, the only

way that the alarm

@ affects report is by
affecting leaving.
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Understanding Independence: Common

descendants

@ @ tampering and fire are

independent

@ tampering and fire are
dependent given alarm

@ @ Intuitively, tampering

can explain away fire
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Understanding independence: example
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Understanding independence: questions

1. On which given probabilities does P(/N) depend?
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1. On which given probabilities does P(/N) depend?

2. If you were to observe a value for B, which variables’
probabilities will change?
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2. If you were to observe a value for B, which variables’
probabilities will change?

3. If you were to observe a value for V, which variables’
probabilities will change?
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Understanding independence: questions

1. On which given probabilities does P(/N) depend?
2. If you were to observe a value for B, which variables’
probabilities will change?

3. If you were to observe a value for V, which variables’
probabilities will change?

4. Suppose you had observed a value for M; if you were to
then observe a value for N/, which variables’ probabilities
will change?

5. Suppose you had observed B and Q; which variables’
probabilities will change when you observe N7
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What variables are affected by observing?

o If you observe variable(s) Y, the variables whose posterior
probability is different from their prior are:

» The ancestors of Y and
» their descendants.
o Intuitively (if you have a causal belief network):

» You do abduction to possible causes and
» prediction from the causes.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:
» If there are arcs A — B and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs B — A and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B
between A and C is open.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:
» If there are arcs A — B and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs B — A and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B
between A and C is open.

@ X is d-connected from Y given Z if there is a path from
X to Y, along open connections.

@ X is d-separated from Y given Z if it is not d-connected.
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@ A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:
» If there are arcs A — B and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs B — A and B — C such that B ¢ Z,
then the connection at B between A and C is open.
» If there are arcs A — B and C — B such that B (or a
descendent of B) is in Z, then the connection at B
between A and C is open.

@ X is d-connected from Y given Z if there is a path from
X to Y, along open connections.

@ X is d-separated from Y given Z if it is not d-connected.

o Xis independen_t? given Z for all conditional
probabilities iff X is d-separated from Y given Z
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Markov Random Field

A Markov random field is composed of

@ of a set of discrete-valued random variables:
X={X,Xa,..., Xy} and

@ a set of factors {fi, ..., fn}, where a factor is a
non-negative function of a subset of the variables.

and defines a joint probability distribution:

PX=x) = ZTLAMX=x).

Z = Zka(Xk :Xk)

where f,(Xy) is a factor on X, C X, and
Xy is X projected onto Xj.
Z is a normalization constant known as the partition function.
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Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a
Markov random field where the nodes are the random
variables and there is an arc between any two variables
that are in a factor together.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 27



Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a
Markov random field where the nodes are the random
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that are in a factor together.

@ A factor graph is a bipartite graph, which contains a
variable node for each random variable and a factor node
for each factor. There is an edge between a variable node
and a factor node if the variable appears in the factor.
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Markov Networks and Factor graphs

@ A Markov network is a graphical representation of a
Markov random field where the nodes are the random
variables and there is an arc between any two variables
that are in a factor together.

@ A factor graph is a bipartite graph, which contains a
variable node for each random variable and a factor node
for each factor. There is an edge between a variable node
and a factor node if the variable appears in the factor.

@ A belief network is a type of Markov random field where
the factors represent conditional probabilities, there is a
factor for each variable, and directed graph is acyclic.
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Independence in a Markov Network

@ The Markov blanket of a variable X is the set of variables
that are in factors with X.

@ A variable is independent of the other variables given its
Markov blanket.
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Independence in a Markov Network

@ The Markov blanket of a variable X is the set of variables
that are in factors with X.

@ A variable is independent of the other variables given its
Markov blanket.

@ X is connected to Y given Z if there is a path from X to
Y in the Markov network, which does not contain an
element of Z.

@ X is separated from Y given Z if it is not connected.
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Independence in a Markov Network

@ The Markov blanket of a variable X is the set of variables
that are in factors with X.

@ A variable is independent of the other variables given its
Markov blanket.

@ X is connected to Y given Z if there is a path from X to
Y in the Markov network, which does not contain an
element of Z.

@ X is separated from Y given Z if it is not connected.

@ A positive distribution is one that does not contain zero
probabilities.

@ X is independent Y given Z for all positive distributions
iff X is separated from Y given Z
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Canonical Representations

@ The parameters of a graphical model are the numbers
that define the model.

@ A belief network is a canonical representation: given the
structure and the distribution, the parameters are
uniquely determined.

@ A Markov random field is not a canonical representation.
Many different parameterizations result in the same
distribution.
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Representations of Conditional Probabilities

There are many representations of conditional probabilities and
factors:

@ Tables

Decision Trees

Rules
Weighted Logical Formulae
Contextual Tables

Logistic Functions
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Tabular Representation

A B C D Prob
true true true true | 0.9
true true true false | 0.1
true true false true | 0.9
true true false false | 0.1
true false true true | 0.2
true false true false | 0.8
true false false true | 0.2
P(D| A B,C): true false false false | 0.8
false true true true | 0.3
false true true false | 0.7
false true false true | 0.4
false true false false | 0.6
false false true true | 0.3
false false true false | 0.7
false false false true | 0.4

false false false false | 0.6
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Decision Tree Representation
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Rule Representation

09: d<aAb

02: d<an—-b
03: d< —-aAc
04: d<+ —aN-—c
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Weighted Logical Formulae

d< ((anbAn)
V(aA—=bAn)
V(=aAcAm)
V(=aA—-cAm))

n; are independent:
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Contextual-Table Representation
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Logistic Functions

P(h A e)

P(hI &)= =5
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Logistic Functions

P(h A e)
P(e)
P(h A e)
~ P(hne)+P(—=hAe)

P(h|e)=
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Logistic Functions

P(h A e)
P(e)
P(h A e)
P(hAe)+ P(—hAe)
1
1+ P(—=hnAe)/P(hAe)

P(h|e)=
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Logistic Functions

P(h A e)
P(e)
P(h A e)
P(hAe)+ P(=hAe)
1
1+ P(=hnNe)/P(hAe)
1
- 1+ e~ log P(hne)/P(—=hAe)

P(h|e)=
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Logistic Functions

P(h A e)
P(e)
P(h A e)
P(hAe)+ P(—hAe)
1

1+ P(=hnNe)/P(hAe)

1
- 1+ e~ log P(hne)/P(—=hAe)
= sigmoid(log odds(h | €))

1
sigmoid(x) = T

odds(h | e) = %

P(h|e)=
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Logistic Functions

A conditional probability is the sigmoid of the log-odds.
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A logistic function is the sigmoid of a linear function.

sigmoid(x) =
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Logistic Representation of Conditional Probability

P(d | A, B, C) = sigmoid(0.9" + A x B
+02" % Ax (1 - B)
+03"%(1-A)xC
+ 04" % (1 - A)*(1-0C))

where 0.9' is sigmoid~1(0.9).
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Logistic Representation of Conditional Probability

P(d | A, B, C) = sigmoid(0.9" + A x B
+02" % Ax (1 - B)
+03"%(1-A)xC
+ 04" % (1 - A)*(1-0C))

where 0.9' is sigmoid~1(0.9).

P(d | A, B, C) = sigmoid (0.4
+ (0.2 —0.4T) x A

+(0.9" - 020 xAx B
+ ...
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