Agent architectures and hierarchical control

Overview:
@ Agents and Robots
@ Agent systems and architectures
@ Agent controllers

@ Hierarchical controllers

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 1



Example: smart house

@ A smart house will monitor your use of essentials, and buy

them before you run out.
Example: snack buying agent that ensures you have a
supply of chips:

> abilities: buy chips (and have them delivered)

» goals:

» stimuli:

» prior knowledge:

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 2 2/11



Agent Systems

A agent system is made
up of a agent and an
environment.

@ An agent receives
stimuli from the
environment

stimuli actions

@ An agent carries out
actions in the
environment.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 3 3/11



Agent System Architecture

@ An agent interacts with
the environment through
its body.

@ The body is made up of:

An agent is made up of a body
and a controller.

Agent P sensors that interpret
Controller stimuli
A » actuators that carry

ercepts commands .
P P out actions

Body @ The controller receives
4 percepts from the body.

stimuli actions

@ The controller sends
commands to the body.

Environment
@ The body can also have

reactions that are not
controlled.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 4 4/11



Implementing a controller

@ A controller is the brains of the agent.

@ Agents are situated in time, they receive sensory data in
time, and do actions in time.

e Controllers have (limited) memory and (limited)
computational capabilities.

@ The controller specifies the command at every time.

@ The command at any time can depend on the current and
previous percepts.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 5 5/11



The Agent Functions

@ Let T be the set of time points.

@ A percept trace is a sequence of all past, present, and
future percepts received by the controller.

@ A command trace is a sequence of all past, present, and
future commands output by the controller.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 6 6/11



The Agent Functions

@ Let T be the set of time points.

@ A percept trace is a sequence of all past, present, and
future percepts received by the controller.

@ A command trace is a sequence of all past, present, and
future commands output by the controller.

@ A transduction is a function from percept traces into
command traces.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 7 6/11



The Agent Functions

@ Let T be the set of time points.

@ A percept trace is a sequence of all past, present, and
future percepts received by the controller.

@ A command trace is a sequence of all past, present, and
future commands output by the controller.

@ A transduction is a function from percept traces into
command traces.

@ A transduction is causal if the command trace up to time
t depends only on percepts up to t.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 8 6/11



The Agent Functions

@ Let T be the set of time points.

@ A percept trace is a sequence of all past, present, and
future percepts received by the controller.

@ A command trace is a sequence of all past, present, and
future commands output by the controller.

@ A transduction is a function from percept traces into
command traces.

@ A transduction is causal if the command trace up to time
t depends only on percepts up to t.

@ A controller is an implementation of a causal
transduction.

@ An agent's history at time t is sequence of past and
present percepts and past commands.

@ A causal transduction specifies a function from an agent’s
history at time t into its action at time t.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 9 6/11



Belief States

@ An agent doesn't have access to its entire history. It only
has access to what it has remembered.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 10 7/11



Belief States

@ An agent doesn't have access to its entire history. It only
has access to what it has remembered.

@ The memory or belief state of an agent at time t encodes
all of the agent’s history that it has access to.

@ The belief state of an agent encapsulates the information
about its past that it can use for current and future
actions.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 11 7/11



Belief States

@ An agent doesn't have access to its entire history. It only
has access to what it has remembered.

@ The memory or belief state of an agent at time t encodes
all of the agent’s history that it has access to.

@ The belief state of an agent encapsulates the information
about its past that it can use for current and future
actions.

@ At every time a controller has to decide on:

» What should it do?
» What should it remember?
(How should it update its memory?)

— as a function of its percepts and its memory.

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 12



“.__memories memories_ .

percepts Commands

Body

Agent

stimuli actions
\4

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 13 8/11



Functions implemented in a controller

“..__memories memories>
= --
percepts ﬁ commands

For discrete time, a controller implements:
@ belief state function remember(belief _state, percept),
returns the next belief state.
e command function command(memory, percept) returns
the command for the agent.

Artificial Intelligence, Lecture 2.1, Page 14 9/11

@©D. Poole and A. Mackworth 2017



Example: smart house

@ A smart house will monitor your use of essentials, and buy
them before you run out.
Example: snack buying agent:

> abilities: buy chips (and have them delivered)
» goals:

» stimuli:

» prior knowledge:

Percept trace:
Control trace:
Transduction:
Belief state:

Belief state transition function:

Control Function:

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 15



Implemented Example

@ Percepts: price, number in stock
@ Action: number to buy

o Belief state: average

@ controller:

» if price < 0.9 x average and instock < 60 buy 48
» else if instock < 12 buy 12
> else buy 0

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 16


http://aipython.org

Implemented Example

@ Percepts: price, number in stock
@ Action: number to buy

o Belief state: average

@ controller:

» if price < 0.9 x average and instock < 60 buy 48
» else if instock < 12 buy 12
> else buy 0

Belief state transition function:

average := average + (price — average) * 0.05

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 17


http://aipython.org

Implemented Example

@ Percepts: price, number in stock

@ Action: number to buy

o Belief state: average

@ controller:
» if price < 0.9 x average and instock < 60 buy 48
» else if instock < 12 buy 12
> else buy 0

@ Belief state transition function:

average := average + (price — average) * 0.05

This maintains a rolling avergage that (eventually)
weights more recent prices more.

(Implemented in AlPython distribution; http://aipython.org)

@©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 2.1, Page 18 11/11


http://aipython.org

