
Understanding Independence: Common ancestors

smokealarm
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alarm and smoke are

dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 1 1 / 20



Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 2 1 / 20



Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are

independent

given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 3 1 / 20



Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are
independent given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 4 1 / 20



Understanding Independence: Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are
independent given fire

Intuitively, fire can
explain alarm and
smoke; learning one
can affect the other by
changing your belief in
fire.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 5 1 / 20



Understanding Independence: Chain

report

alarm

leaving

alarm and report are

dependent

alarm and report are

independent

given
leaving

Intuitively, the only
way that the alarm
affects report is by
affecting leaving .
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Understanding Independence: Common

descendants

tampering

alarm

fire tampering and fire are
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tampering and fire are

dependent

given alarm

Intuitively, tampering
can explain away fire
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Understanding independence: example

B CA D E F
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Understanding independence: questions

1. On which given probabilities does P(N) depend?

2. If you were to observe a value for B , which variables’
probabilities will change?

3. If you were to observe a value for N , which variables’
probabilities will change?

4. Suppose you had observed a value for M ; if you were to
then observe a value for N , which variables’ probabilities
will change?

5. Suppose you had observed B and Q; which variables’
probabilities will change when you observe N?
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What variables are affected by observing?

If you observe variable(s) Y , the variables whose posterior
probability is different from their prior are:

I The ancestors of Y and
I their descendants.

Intuitively (if you have a causal belief network):
I You do abduction to possible causes and
I prediction from the causes.

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 8.3, Page 22 6 / 20



d-separation

A connection is a meeting of arcs in a belief network. A
connection is open is defined as follows:

I If there are arcs A→ B and B → C such that B 6∈ Z ,
then the connection at B between A and C is open.

I If there are arcs B → A and B → C such that B 6∈ Z ,
then the connection at B between A and C is open.

I If there are arcs A→ B and C → B such that B (or a
descendent of B) is in Z , then the connection at B
between A and C is open.

X is d-connected from Y given Z if there is a path from
X to Y , along open connections.

X is d-separated from Y given Z if it is not d-connected.

X is independent Y given Z for all conditional
probabilities iff X is d-separated from Y given Z
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Markov Random Field

A Markov random field is composed of

of a set of discrete-valued random variables:
X = {X1,X2, . . . ,Xn} and

a set of factors {f1, . . . , fm}, where a factor is a
non-negative function of a subset of the variables.

and defines a joint probability distribution:

P(X = x) =
1

Z

∏
k

fk(Xk = xk) .

Z =
∑

x

∏
k

fk(Xk = xk)

where fk(Xk) is a factor on Xk ⊆ X, and
xk is x projected onto Xk .
Z is a normalization constant known as the partition function.
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Markov Networks and Factor graphs

A Markov network is a graphical representation of a
Markov random field where the nodes are the random
variables and there is an arc between any two variables
that are in a factor together.

A factor graph is a bipartite graph, which contains a
variable node for each random variable and a factor node
for each factor. There is an edge between a variable node
and a factor node if the variable appears in the factor.

A belief network is a type of Markov random field where
the factors represent conditional probabilities, there is a
factor for each variable, and directed graph is acyclic.
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Independence in a Markov Network

The Markov blanket of a variable X is the set of variables
that are in factors with X .

A variable is independent of the other variables given its
Markov blanket.

X is connected to Y given Z if there is a path from X to
Y in the Markov network, which does not contain an
element of Z .

X is separated from Y given Z if it is not connected.

A positive distribution is one that does not contain zero
probabilities.

X is independent Y given Z for all positive distributions
iff X is separated from Y given Z
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Canonical Representations

The parameters of a graphical model are the numbers
that define the model.

A belief network is a canonical representation: given the
structure and the distribution, the parameters are
uniquely determined.

A Markov random field is not a canonical representation.
Many different parameterizations result in the same
distribution.
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Representations of Conditional Probabilities

There are many representations of conditional probabilities and
factors:

Tables

Decision Trees

Rules

Weighted Logical Formulae

Contextual Tables

Logistic Functions
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Tabular Representation

P(D | A,B ,C ) :

A B C D Prob

true true true true 0.9
true true true false 0.1
true true false true 0.9
true true false false 0.1
true false true true 0.2
true false true false 0.8
true false false true 0.2
true false false false 0.8
false true true true 0.3
false true true false 0.7
false true false true 0.4
false true false false 0.6
false false true true 0.3
false false true false 0.7
false false false true 0.4
false false false false 0.6
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Decision Tree Representation
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Rule Representation

0.9 : d ← a ∧ b

0.2 : d ← a ∧ ¬b

0.3 : d ← ¬a ∧ c

0.4 : d ← ¬a ∧ ¬c
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Weighted Logical Formulae

d ↔ ((a ∧ b ∧ n0)

∨ (a ∧ ¬b ∧ n1)

∨ (¬a ∧ c ∧ n2)

∨ (¬a ∧ ¬c ∧ n2))

ni are independent:

P(n0) = 0.9

P(n1) = 0.2

P(n2) = 0.3

P(n3) = 0.4
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Contextual-Table Representation
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Logistic Functions

P(h | e) =
P(h ∧ e)

P(e)

=
P(h ∧ e)

P(h ∧ e) + P(¬h ∧ e)

=
1

1 + P(¬h ∧ e)/P(h ∧ e)

=
1

1 + e− logP(h∧e)/P(¬h∧e)

= sigmoid(log odds(h | e))

sigmoid(x) =
1

1 + e−x

odds(h | e) =
P(h ∧ e)

P(¬h ∧ e)
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Logistic Functions

A conditional probability is the sigmoid of the log-odds.

0
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0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-10 -5 0 5 10

1

1 + e- x

sigmoid(x) =
1

1 + e−x

A logistic function is the sigmoid of a linear function.
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Logistic Representation of Conditional Probability

P(d | A,B ,C ) = sigmoid(0.9† ∗ A ∗ B

+ 0.2† ∗ A ∗ (1− B)

+ 0.3† ∗ (1− A) ∗ C

+ 0.4† ∗ (1− A) ∗ (1− C ))

where 0.9† is sigmoid−1(0.9).

P(d | A,B ,C ) = sigmoid(0.4†

+ (0.2† − 0.4†) ∗ A

+ (0.9† − 0.2†) ∗ A ∗ B

+ ...
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