
Learning objectives

At the end of the class you should be able to:

characterize simplifying assumptions made in building AI
systems

determine what simplifying assumptions particular AI
systems are making

suggest what assumptions to lift to build a more
intelligent system than an existing one
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Dimensions

Research proceeds by making simplifying assumptions,
and gradually reducing them.

Each simplifying assumption gives a dimension of
complexity
I multiple values in a dimension: from simple to complex
I simplifying assumptions can be relaxed in various

combinations
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Dimensions of complexity

Dimension Values
Modularity flat, modular, hierarchical

Planning horizon non-planning, finite stage,
indefinite stage, infinite stage

Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Modularity

Model at one level of abstraction: flat

Model with interacting modules that can be understood
separately: modular

Model with modules that are (recursively) decomposed
into modules: hierarchical

Example: Planning a trip from here to a see the Mona
Lisa in Paris.

Flat representations are adequate for simple systems.

Complex biological systems, computer systems,
organizations are all hierarchical

A flat description is either continuous or discrete.
Hierarchical reasoning is often a hybrid of continuous and
discrete.
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Planning horizon

...how far the agent looks into the future when deciding what
to do.

Static: world does not change

Finite stage: agent reasons about a fixed finite number of
time steps

Indefinite stage: agent reasons about a finite, but not
predetermined, number of time steps

Infinite stage: the agent plans for going on forever
(process oriented)
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Representation

Much of modern AI is about finding compact representations
and exploiting the compactness for computational gains.
A agent can reason in terms of:

Explicit states — a state is one way the world could be

Features or propositions.
I States can be described using features.
I 30 binary features can represent 230 = 1, 073, 741, 824

states.

Individuals and relations
I There is a feature for each relationship on each tuple of

individuals.
I Often an agent can reason without knowing the

individuals or when there are infinitely many individuals.
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Computational limits

Perfect rationality: the agent can determine the best
course of action, without taking into account its limited
computational resources.

Bounded rationality: the agent must make good decisions
based on its perceptual, computational and memory
limitations.
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Learning from experience

Whether the model is fully specified a priori:

Knowledge is given.

Knowledge is learned from data or past experience.

. . . always some mix of prior (innate, programmed) knowledge
and learning (nature vs nurture).

Learning is impossible without prior knowledge (bias).
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Uncertainty

There are two dimensions for uncertainty. In each dimension
an agent can have

No uncertainty: the agent knows what is true

Disjunctive uncertainty: there is a set of states that are
possible

Probabilistic uncertainty: a probability distribution over
the worlds.
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Why probability?

Agents need to act even if they are uncertain.

Predictions are needed to decide what to do:
I definitive predictions: you will be run over tomorrow
I disjunctions: be careful or you will be run over
I point probabilities: probability you will be run over

tomorrow is 0.002 if you are careful and 0.05 if you are
not careful

Acting is gambling: agents who don’t use probabilities
will lose to those who do.

Probabilities can be learned from data and prior
knowledge.
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Sensing uncertainty

Whether an agent can determine the state from its stimuli:

Fully-observable: the agent can observe the state of the
world.

Partially-observable: there can be a number states that
are possible given the agent’s stimuli.
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Effect uncertainty

If an agent knew the initial state and its action, could it
predict the resulting state?

The dynamics can be:

Deterministic: the resulting state is determined from the
action and the state

Stochastic: there is uncertainty about the resulting state.
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Preference

What does the agent try to achieve?

achievement goal is a goal to achieve. This can be a
complex logical formula.

complex preferences may involve tradeoffs between
various desiderata, perhaps at different times.
I ordinal only the order matters
I cardinal absolute values also matter

Examples: coffee delivery robot, medical doctor
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Number of agents

Are there multiple reasoning agents that need to be taken into
account?

Single agent reasoning: any other agents are part of the
environment.

Multiple agent reasoning: an agent reasons strategically
about the reasoning of other agents.

Agents can have their own goals: cooperative, competitive, or
goals can be independent of each other
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Interaction

When does the agent reason to determine what to do?

reason offline: before acting

reason online: while interacting with environment
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Dimensions of complexity

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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State-space search

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Deterministic planning

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Decision networks

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Markov decision processes (MDPs)

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online

c©D. Poole and A. Mackworth 2017 Artificial Intelligence, Lecture 1.2, Page 48 20 / 25



Decision-theoretic planning

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
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Reinforcement learning

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Classical game theory

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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Humans

Dimension Values
Modularity flat, modular, hierarchical
Planning horizon non-planning, finite stage,

indefinite stage, infinite stage
Representation states, features, relations
Computational limits perfect rationality, bounded rationality
Learning knowledge is given, knowledge is learned
Sensing uncertainty fully observable, partially observable
Effect uncertainty deterministic, stochastic
Preference goals, complex preferences
Number of agents single agent, multiple agents
Interaction offline, online
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The dimensions interact in complex ways

Partial observability makes multi-agent and indefinite
horizon reasoning more complex

Modularity interacts with uncertainty and succinctness:
some levels may be fully observable, some may be
partially observable

Three values of dimensions promise to make reasoning
simpler for the agent:
I Hierarchical reasoning
I Individuals and relations
I Bounded rationality
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