Python code for

Artificial Intelligence
Foundations of Computational Agents

David L. Poole and Alan K. Mackworth

Version 0.9.15 of December 23, 2024.

https://aipython.orgl https://artint.info

©David L Poole and Alan K Mackworth 2017-2024.

All codeis licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. See: https://creativecommons.org/licenses/
by-nc-sa/4.0/deed.en

This document and all the code can be downloaded from
https://artint.info/AIPython/ or from https://aipython.org

The authors and publisher of this book have used their best efforts in prepar-
ing this book. These efforts include the development, research and testing of
the programs to determine their effectiveness. The authors and publisher make
no warranty of any kind, expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection
with, or arising out of, the furnishing, performance, or use of these programs.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org
https://artint.info
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://artint.info/AIPython/
https://aipython.org
https://aipython.org

Contents

Conten

[L Python for Artificial Intelligence]
1.1 yPython?| oo
12 Getting Python|
1.3 Running Python|,
1' 1 I 1. tfall:il --------------------------------
(1.5~ Featuresof Python|

|1.5.1 f—strinﬁ

|1.5.2 Lists, Tuples, Sets, Dictionaries and Comprehensions| . .

[L.5.4 Functions as first-class objects|.
L6 Useful Libraries
161 TimingCodel
1.6.2 Plotting: Matplotlib]
Il ;: U ti li ti efil --------------------------------

171 Display|.

7. TEMAX © o v e e e e e e

[1.73 Probability].

(1.8 TestingCode|.

2 Agent Architectures and Hierarchical Control
R.I Representing Agents and Environments|

2.2 Paper buying agent and environment|
2.21 The Environment

222 TheAgent|

4 Contents

23 Plottingl 29
Hierarchical Controller| 31
3T Worldl 31

32 Body| 31

.3.4 o Laver| 35

235 Plotting] 36

B Searching for Solutions| 41
B.1 Representing Search Problems| 41

B.11 Explicit Representation of Search Graph|. 43
B12 Paths 45
B.1.3 Example Search Problems| 47
3.2 Generic Searcher and Variants|. 54
B21 Searched 54
B.2.2 GUI for Tracing Searchf. 55
B.2.3 Frontier as a Priority Queue| 60
B24 A"Searchl 61
8.2.5 Multiple Path Pruning) 63
B3 Branch-and-boundSearchl 65
4 Reasoning with Constraints| 69
4.1 Constraint Satisfaction Problems| 69
411 Variables|. 0 00 L. 69
412 Constraints] 70

413 CSPsl 71

@14 Examples, 74

4.2 A Simple Depth-first Solver| 83
4.3 Converting CSPs to Search Problems|. 85
4.4 Consistency Algorithms| 87
4.4.1 Direct Implementation of Domain Splitting| 89

442 Consistency GUI| 91

4.4.3 Domain Splitting as an interface to graph searching| . . . 94

M5 Solving CSPs using Stochastic Local Search| 96
451 Any-conflic] 98

452 Two-Stage Choice]. 99

4.5.3 Updatable Priority Queues| 101

4.5.4 Plotting Run-Time Distributions| 103

4 R 104

.6 Discrete Optimization| 105
4.6.1 Branch-and-bound Searchl 106
[>_Propositions and Inference| 109
b.I ~ Representing Knowledge Bases 109
.2 Bottom-up Proofs (with askables)|. 112

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Contents 5

p.3 Top-down Proofs (with askables)[. 114
b.4 Debugging and Explanation|. 115
b5 Assumables 119
.6 Negation-as-failure[. 122
{6 Deterministic Planning 125
[p-1 Representing Actions and Planning Problems. 125
6.1.1 Robot Delivery Domain| 126
6.12 Blocks Worldl 128

.2 ~ Forward Planning|. 130
[621 Defining Heuristics fora Planner| 133

[6.3 RegressionPlanning| 135
[6:3.1 Defining Heuristics for a Regression Planner] 137

6.4 PlanningasaCSP|. 138
6.5 Partial-Order Planning] 142
[7__Supervised Machine Learning] 149
[71 Representations of Data and Predictions 150
[711 Creating Boolean Conditions from Features. 153
[71.2 Evaluating Predictions| 155
[71.3 Creating Test and Training Sets| 157
[714 TImporting Data FromFile| 157
[715 Augmented Features|. 161

ic Learner Interfacel 163

[7.3 Learning With No Input Features|. 163
ION| .« v v 166

|74 Decision Tree Learning| 167
[75 Cross Validation and Parameter Tuning| 172
[7.6 Linear Regression and Classification] 174
[7.7 Boosting| Lo o 182
[7.71 Gradient Tree Boosting]. 185

[8 Neural Networks and Deep Learning| 187
BI Tayers 187
BIT TinearLayer. 188
12 ReLUTLayer| 190
BI3 Sigmoidlayer.o 190

8.2 Feedforward Networks|. 191
(8.3 Improved Optimization| 193
.......................... 193

8 M Dl & e e e e e 193

3.4 Dropout] 194
85 Examples|. o o oo 195
[9 Reasoning with Uncertainty| 201

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Contents

0.1 Representing

Probabilistic Models| 201

0.2 Representing Factors| 201
0.3 Conditional Probability Distributions| 203

0.3.1 Logistic

Regression|, 204

|2.3.2 N01sz-or| 204

©.3.3 Tabular Factorsand Probl 205
[9.3.4 Decision Tree Representations of Factors| 206

0.4 GraphicalModels| 208
9.4.1 Showing Belief Networksl 210
0.42 Example Belief Networks| 210

05 Inference Methods| 216
[0.5.1 Showing Posterior Distributions| 217

i L 218

9.7 Recursive Conditioning| 220
0.8 Variable Elimination] 224
0.9 Stochastic Simulation|. 228
9.9.1 Sampling from a discrete distribution| 228
0.9.2 Sampling Methods for Belief Network Inference] 230

9.9.5 Particle Filterin§| 232

E.9.6 ExamEles| 234

9 Db pling| o 235

[0.9.8 Plotting Behavior of Stochastic Simulators| 236
©9.10 Hidden Markov Models| 239
[9.10.1 Exact Filteringfor HMMs| 241

ization| Lo 242

|?.10.3 Particle

Filtering for HMMs| 245

E.lOA E;enerating ExamEIes| 247

9.11 Dynamic Belief Networks| 248
0.11.1 Representing Dynamic Belief Networks| 249

E.ll.Z Unrolling DBNs| 253
011.3 DBNFiltering] 255

(10 Learning with Uncertainty| 257
(10.1 Bayesian Learning| 257
102 K-meansl 261
M03EMo e 266

11 Causality 271
[11.1 Do Questions|, 271
[11.2 Counterfactual Reasoning| 274

11.2.1 Choosing Deterministic System|. 274
11.2.2 Firing Squad Example| 278
https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Contents 7

[12 Planning with Uncertainty| 281
281

283

289

290

293

296

297

306

307

311

[13 Reinforcement Learning] 315
[13.1 Representing Agents and Environments| 315
[3I1 Environments 315
[BI2 Agents| 316
[13.1.3 Simulating an Environment-Agent Interaction] 317
[[3.14 Party Environment| 319
[3.1.5 Environment from a Problem Domain| 320
(13.1.6 Monster Game Environment 321
132 QLlearning|. 324
13.2.1 Exploration Strategies| 327
1322 Testing Q-learning] 327

13.3" Q-leaning with Experience Replay| 329
13.4 Stochastic Policy Learning Agent| 332
135 Model-based Reinforcement Learner 334
[13.6 Reinforcement Learning with Features|. 337
[13.6.1 Representing Features| 337
[[3.6.2 Feature-based RI.learned o v v v v v v .. 340
37 GUIFOrRO . . . o oo oo et 343
(14 Multiagent Systems| 351
141 Minimax 351
14.1.1 Creating a two-playergamef. 352
14.1.2 Minimax and a-f Pruning{ 355
(142 Multiagent Learning| 357
14.2.1 Simulating Multiagent Interaction with an Environment 357
1422 Example Games|. 360
14.2.3 Testing Games and Environments| 362

(15 Individuals and Relations| 365
15.1 Representing Datalog and Logic Programs| 365
152 Unificationl o 367
153 KnowledgeBases| 368
154 Top-down Proof Procedure| 370

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

8 Contents

[15.,5 Logic Program Example| 372

[16 Knowledge Graphs and Ontologies| 375
[[61 TripleStore|. 375
[16.2 Integrating Datalog and Triple Store| 378

[17 Relational Learning 381
[[71 Collaborative Filtering] 381
711 Plotting] 385

[17.1.2 Loading Rating Sets from Files and Websites| 388

[17.1.3 Ratings of top itemsand users] 389

i ilisticModels| 391

(18 Version History| 397
Bibliography| 399
[ndex 401

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Chapter 1

Python for Artificial Intelligence

AIPython contains runnable code for the book Artificial Intelligence, foundations
of computational agents, 3rd Edition [Poole and Mackworth| 2023]]. It has the
following design goals:

* Readability is more important than efficiency, although the asymptotic
complexity is not compromised. AIPython is not a replacement for well-
designed libraries, or optimized tools. Think of it like a model of an en-
gine made of glass, so you can see the inner workings; don’t expect it to
power a big truck, but it lets you see how an engine works to power a
truck.

¢ It uses as few libraries as possible. A reader only needs to understand
Python. Libraries hide details that we make explicit. The only library
used is matplotlib for plotting and drawing.

1.1 Why Python?

We use Python because Python programs can be close to pseudo-code. It is
designed for humans to read.

Python is reasonably efficient. Efficiency is usually not a problem for small
examples. If your Python code is not efficient enough, a general procedure to
improve it is to find out what is taking most of the time, and implement just
that part more efficiently in some lower-level language. Many lower-level lan-
guages interoperate with Python nicely. This will result in much less program-
ming and more efficient code (because you will have more time to optimize)
than writing everything in a lower-level language. Much of the code here is
more efficiently implemented in libraries that are more difficult to understand.

9

10 1. Python for Artificial Intelligence

1.2 Getting Python

You need Python 3.9 or later (https://python.org/) and a compatible version
of matplotlib (https://matplotlib.org/). This code is not compatible with
Python 2 (e.g., with Python 2.7).

Download and install the latest Python 3 release from https://python.
org/ or https://www.anaconda.com/download (free download includes many
libraries). This should also install pip. You can install matplotlib using

pip install matplotlib

in a terminal shell (not in Python). That should “just work”. If not, try using
pip3 instead of pip.

The command python or python3 should then start the interactive Python
shell. You can quit Python with a control-D or with quit().

To upgrade matplotlib to the latest version (which you should do if you
install a new version of Python) do:

pip3 install --upgrade matplotlib

We recommend using the enhanced interactive python ipython (https://
ipython.org/) [Pérez and Granger, 2007]. To install ipython after you have
installed python do:

pip3 install ipython

1.3 Running Python

We assume that everything is done with an interactive Python shell. You can
either do this with an IDE, such as IDLE that comes with standard Python
distributions, or just running ipython3 or python3 (or perhaps just ipython or
python) from a shell.

Here we describe the most simple version that uses no IDE. If you down-
load the zip file, and cd to the “aipython” folder where the .py files are, you
should be able to do the following, with user input in bold. The first python
command is in the operating system shell; the -i is important to enter interac-
tive mode.

python -i searchGeneric.py

Testing problem 1:

7 paths have been expanded and 4 paths remain in the frontier

Path found: A --=> C --> B --> D --> G

Passed unit test

>>> searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) i#A*
>>> searcher2.search() # find first path

16 paths have been expanded and 5 paths remain in the frontier

0103 --> 0109 --> 0119 --> 0123 --> r123

>>> searcher2.search() # find next path

https://aipython.org Version 0.9.15 December 23, 2024

https://python.org/
https://matplotlib.org/
https://python.org/
https://python.org/
https://www.anaconda.com/download
https://ipython.org/
https://ipython.org/
https://aipython.org

1.4. Pittalls 11

21 paths have been expanded and 6 paths remain in the frontier

0103 --> b3 --> b4 --> 0109 --> 0119 --> 0123 --> r123

>>> searcher2.search() # find next path

28 paths have been expanded and 5 paths remain in the frontier

0103 --> b3 --> b1 --> b2 --> b4 --> 0109 --> 0119 --> 0123 --> r123
>>> searcher2.search() # find next path

No (more) solutions. Total of 33 paths expanded.

>>>

You can then interact at the last prompt.

There are many textbooks for Python. The best source of information about
python is https://www.python.org/. The documentation is at https://docs.
python.org/3/.

The rest of this chapter is about what is special about the code for Al tools.
We will only use the standard Python library and matplotlib. All of the exer-
cises can be done (and should be done) without using other libraries; the aim
is for you to spend your time thinking about how to solve the problem rather
than searching for pre-existing solutions.

1.4 Pitfalls

It is important to know when side effects occur. Often Al programs consider
what would /might happen given certain conditions. In many such cases, we
don’t want side effects. When an agent acts in the world, side effects are ap-
propriate.

In Python, you need to be careful to understand side effects. For example,
the inexpensive function to add an element to a list, namely append, changes
the list. In a functional language like Haskell or Lisp, adding a new element to a
list, without changing the original list, is a cheap operation. For example if x is
a list containing n elements, adding an extra element to the list in Python (using
append) is fast, but it has the side effect of changing the list x. To construct a
new list that contains the elements of x plus a new element, without changing
the value of x, entails copying the list, or using a different representation for
lists. In the searching code, we will use a different representation for lists for
this reason.

1.5 Features of Python

1.5.1 f-strings

no1raa

Python can use matching ', ", or """, the latter two respecting line breaks
in the string. We use the convention that when the string denotes a unique
symbol, we use single quotes, and when it is designed to be for printing, we
use double quotes.

https://aipython.org Version 0.9.15 December 23, 2024

https://www.python.org/
https://docs.python.org/3/
https://docs.python.org/3/
https://aipython.org

12 1. Python for Artificial Intelligence

We make extensive use of f-strings https://docs.python.org/3/tutorial/
inputoutput.html. In its simplest form

f"str1{el}str2{e2}str3"
where e1 and e2 are expressions, is an abbreviation for
"str1"+str(el)+"str2"+str(e2)+"str3"

where + is string concatenation, and str is a function that returns a string rep-
resentation of its argument.

1.5.2 Lists, Tuples, Sets, Dictionaries and Comprehensions

We make extensive uses of lists, tuples, sets and dictionaries (dicts). See
https://docs.python.org/3/1library/stdtypes.html. Lists use “[...]", dictio-
naries use “{key : wvalue,...}"”, sets use “{...}” (without the :), tuples use
One of the nice features of Python is the use of comprehensions: list, tuple,
set and dictionary comprehensions.
A list comprehension is of the form

[fe for e in iter if cond|

is the list values fe for each e in iter for which cond is true. The “if cond” part
is optional, but the “for” and “in” are not optional. Here e is a variable (or a
pattern that can be on the left side of =), iter is an iterator, which can generate
a stream of data, such as a list, a set, a range object (to enumerate integers
between ranges) or a file. cond is an expression that evaluates to either True or
False for each e, and fe is an expression that will be evaluated for each value of
e for which cond returns True. For example:

>>> [exe for e in range(20) if e%2==0]
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

Comprehensions can also be used for sets and dictionaries. For example,
the following creates an index for list a:
>>> a = ["a","f","bar","b","a", "aaaaa"]
>>> ind = {alil]:i for i in range(len(a))}
>>> ind
{'a': 4, 'f': 1, 'bar': 2, 'b': 3, 'aaaaa': 5}
>>> ind['b']
3
which means that 'b' is the element with index 3 in the list.
The assignment of ind could have also be written as:

>>> ind = {val:i for (i,val) in enumerate(a)}
where enumerate is a built-in function that, given a dictionary, returns an gen-

erator of (index, value) pairs.

https://aipython.org Version 0.9.15 December 23, 2024

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/library/stdtypes.html
https://aipython.org

11
12
13
14
15
16
17
18
19
20
21

1.5. Features of Python 13

1.5.3 Generators

Python has generators which can be used for a form of lazy evaluation — only
computing values when needed.

A comprehension in round parentheses gives a generator that can generate
the elements as needed. The result can go in a list or used in another com-
prehension, or can be called directly using next. The procedure next takes an
iterator and returns the next element (advancing the iterator); it raises a Sto-
plteration exception if there is no next element. The following shows a simple
example, where user input is prepended with >>>

>>> a = (e*xe for e in range(20) if e%2==0)

>>> next(a)

0

>>> next(a)

4

>>> next(a)

16

>>> list(a)

[36, 64, 100, 144, 196, 256, 324]

>>> next(a)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Notice how list(a) continued on the enumeration, and got to the end of it.
To make a procedure into a generator, the yield command returns a value
that is obtained with next. It is typically used to enumerate the values for a for
loop or in generators. (The yield command can also be used for coroutines,
but AIPython only uses it for generators.)
A version of the built-in range, with 2 or 3 arguments (and positive steps)
can be implemented as

pythonDemo.py — Some tricky examples
def myrange(start, stop, step=1):
"""enumerates the values from start in steps of size step that are
less than stop.

nnn

assert step>0, f"only positive steps implemented in myrange: {step}”

i = start
while i<stop:
yield i

i += step

print("list(myrange(2,30,3)):",list(myrange(2,30,3)))

INumbered lines are Python code available in the code-directory, aipython. The name of
the file is given in the gray text above the listing. The numbers correspond to the line numbers
in that file.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

23
24
25
26
27
28

30
31
32
33
34

14 1. Python for Artificial Intelligence

The built-in range is unconventional in how it handles a single argument, as
the single argument acts as the second argument of the function. The built-in
range also allows for indexing (e.g., range(2, 30, 3) [2] returns 8), but the above
implementation does not. However myrange also works for floats, whereas the
built-in range does not.

Exercise 1.1 Implement a version of myrange that acts like the built-in version
when there is a single argument. (Hint: make the second argument have a default
value that can be recognized in the function.) There is no need to make it work
with indexing.

Yield can be used to generate the same sequence of values as in the example
above.

pythonDemo.py — (continued)

def ga(n):
"""generates square of even nonnegative integers less than n
for e in range(n):
if e%2==0:
yield exe
a = ga(20)

nnn

The sequence of next(a), and list(a) gives exactly the same results as the com-
prehension at the start of this section.

It is straightforward to write a version of the built-in enumerate called myenumerate:

pythonDemo.py — (continued)

def myenumerate(iter, start=0):

i = start

for e in iter:
yield i,e
i+=1

1.5.4 Functions as first-class objects

Python can create lists and other data structures that contain functions. There
is an issue that tricks many newcomers to Python. For a local variable in a
function, the function uses the last value of the variable when the function is
called, not the value of the variable when the function was defined (this is called
“late binding”). This means if you want to use the value a variable has when
the function is created, you need to save the current value of that variable.
Whereas Python uses “late binding” by default, the alternative that newcom-
ers often expect is “early binding”, where a function uses the value a variable
had when the function was defined. The following examples show how early
binding can be implemented.

Consider the following programs designed to create a list of 5 functions,
where the ith function in the list is meant to add i to its argument:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56

57
58
59
60

1.5. Features of Python 15

pythonDemo.py — (continued)

fun_list1 = []
for i in range(5):
def funi(e):
return e+i
fun_list1.append(funi)

fun_list2 = []
for i in range(5):
def fun2(e,iv=i):
return e+iv
fun_list2.append(fun2)

fun_list3 = [lambda e: e+i for i in range(5)]

fun_list4 = [lambda e,iv=i: e+iv for i in range(5)]

i=56

Try to predict, and then test to see the output, of the output of the following
calls, remembering that the function uses the latest value of any variable that
is not bound in the function call:

pythonDemo.py — (continued)

in Shell do
ipython -i pythonDemo.py

Try these (copy text after the comment symbol and paste in the Python

prompt):

print([f(10) for
print([f(10) for
print([f(10) for
print([f(10) for

in fun_list1])
in fun_list2])
in fun_list3])
in fun_list4])

- —h —h h

In the first for-loop, the function fun1 uses i, whose value is the last value it was
assigned. In the second loop, the function fun2 uses iv. There is a separate iv
variable for each function, and its value is the value of i when the function was
defined. Thus fun1 uses late binding, and fun2 uses early binding. fun_list3
and fun_list4 are equivalent to the first two (except fun_list4 uses a different
i variable).

One of the advantages of using the embedded definitions (as in fun1 and
fun2 above) over the lambda is that is it possible to add a __doc__ string, which
is the standard for documenting functions in Python, to the embedded defini-
tions.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

16 1. Python for Artificial Intelligence

1.6 Useful Libraries
1.6.1 Timing Code

In order to compare algorithms, you may want to compute how long a program
takes to run; this is called the run time of the program. The most straightfor-
ward way to compute the run time of foo.bar (aaa) is to use time.perf_counter(),
as in:

import time

start_time = time.perf_counter()

foo.bar(aaa)

end_time = time.perf_counter()

print("Time:"”, end_time - start_time, "seconds")

Note that time.perf_counter () measures clock time; so this should be done
without user interaction between the calls. On the interactive python shell, you
should do:

start_time = time.perf_counter(); foo.bar(aaa); end_time = time.perf_counter()

If this time is very small (say less than 0.2 second), it is probably very in-
accurate; run your code multiple times to get a more accurate count. For this
you can use timeit (https://docs.python.org/3/library/timeit.html). To
use timeit to time the call to foo.bar(aaa) use:

import timeit
time = timeit.timeit("foo.bar(aaa)”,

setup="from __main__ import foo,aaa"”, number=100)

The setup is needed so that Python can find the meaning of the names in the
string that is called. This returns the number of seconds to execute foo.bar (aaa)
100 times. The number should be set so that the run time is at least 0.2 seconds.

You should not trust a single measurement as that can be confounded by in-
terference from other processes. timeit.repeat can be used for running timeit
a few (say 3) times. When reporting the time of any computation, you should
be explicit and explain what you are reporting. Usually the minimum time is
the one to report (as it is the run with less interference).

1.6.2 Plotting: Matplotlib

The standard plotting for Python is matplotlib (https://matplotlib.org/). We
will use the most basic plotting using the pyplot interface.

Here is a simple example that uses most of AIPython uses. The output is
shown in Figure

pythonDemo.py — (continued)

62 | import matplotlib.pyplot as plt
63

https://aipython.org Version 0.9.15 December 23, 2024

https://docs.python.org/3/library/timeit.html
https://matplotlib.org/
https://aipython.org

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

1.6. Useful Libraries

—— The first fun
3004 ——" y=(x-40)"2/10-20

250 A

200 ~

150 A

The y axis

100 -

50 1

0 20 40 60
The x axis
Figure 1.1: Result of pythonDemo code
def myplot(minv,maxv,step,funl,fun2):
plt.ion() # make it interactive
plt.xlabel("The x axis")
plt.ylabel("The y axis")
plt.xscale('linear') # Makes a 'log' or 'linear' scale
xvalues = range(minv,maxv,step)
plt.plot(xvalues,[fun1(x) for x in xvalues],
label="The first fun")
plt.plot(xvalues,[fun2(x) for x in xvalues], linestyle='--', color='k',

label=fun2.__doc__) # use the doc string of the function
plt.legend(loc="upper right") # display the legend

def slin(x):
y=2x 47"
return 2*x+7

def sqfun(x):
"hy=(x-40)"2/10-20"""
return (x-40)*x2/10-20

Try the following:

from pythonDemo import myplot, slin, sqgfun
import matplotlib.pyplot as plt
myplot(0,100,1,slin,sqfun)
plt.legend(loc="best")

import math

H o H O H H HH

https://aipython.org Version 0.9.15

plt.plot([41+40*math.cos(th/10) for th in range(50)],
[100+100*math.sin(th/10) for th in range(50)1)

100

December 23, 2024

https://aipython.org

91
92

11
12
13
14
15
16
17
18
19
20
21
22
23
24

18 1. Python for Artificial Intelligence

plt.text(40,100,"ellipse?”)
plt.xscale('log')

At the end of the code are some commented-out commands you should try in
interactive mode. Cut from the file and paste into Python (and remember to
remove the comments symbol and leading space).

1.7 Utilities

1.7.1 Display

To keep things simple, using only standard Python, AIPython code is written
using a text-oriented tracing.
The method self.display is used to trace the program. Any call

self.display(level, to_print...)

where the level is less than or equal to the value for max_display_level will be
printed. The to_print... can be anything that is accepted by the built-in print
(including any keyword arguments).

The definition of display is:

display.py — A simple way to trace the intermediate steps of algorithms.

class Displayable(object):
"""Class that uses 'display'.
The amount of detail is controlled by max_display_level

nnn

max_display_level = 1 # can be overridden in subclasses or instances

def display(self,level,*args,**nargs):
"""print the arguments if level is less than or equal to the
current max_display_level.
level is an integer.
the other arguments are whatever arguments print can take.

nnn

if level <= self.max_display_level:
print(xargs, **nargs) ##if error you are using Python2 not
Python3

In this code, args gets a tuple of the positional arguments, and nargs gets a
dictionary of the keyword arguments. This will not work in Python 2, and will
give an error.
Any class that wants to use display can be made a subclass of Displayable.
To change the maximum display level to 3 for a class do:

Classname.max_display_level =3

which will make calls to display in that class print when the value of level is
less-than-or-equal to 3. The default display level is 1. It can also be changed for
individual objects (the object value overrides the class value).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

1.7. Utilities 19

The value of max_display_level by convention is:
0 display nothing
1 display solutions (nothing that happens repeatedly)
2 also display the values as they change (little detail through a loop)
3 also display more details
4 and above even more detail

To implement a graphical user interface (GUI), the definition of display can
be overridden. See, for example, SearcherGUI in Section and ConsistencyGUI
in Section These GUISs use the AIPython code unchanged.

1.7.2 Argmax

Python has a built-in max function that takes a generator (or a list or set) and re-

turns the maximum value. The argmaxall method takes a generator of (element, value)

pairs, as for example is generated by the built-in enumerate(list) for lists or
dict.items() for dictionaries. It returns a list of all elements with maximum
value; argmaxe returns one of these values at random. The argmax method
takes a list and returns the index of a random element that has the maximum
value. argmaxd takes a dictionary and returns a key with maximum value.

utilities.py — AlPython useful utilities

import random
import math

def argmaxall(gen):
"""ogen is a generator of (element,value) pairs, where value is a real.
argmaxall returns a list of all of the elements with maximal value.
maxv = -math.inf # negative infinity
maxvals = [] # list of maximal elements
for (e,v) in gen:
if v > maxv:
maxvals, maxv = [e], v
elif v == maxv:
maxvals.append(e)
return maxvals

def argmaxe(gen):
"""oen is a generator of (element,value) pairs, where value is a real.
argmaxe returns an element with maximal value.
If there are multiple elements with the max value, one is returned at
random.

nnn

return random.choice(argmaxall(gen))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61

20 1. Python for Artificial Intelligence

def argmax(lst):
"""returns maximum index in a list"""
return argmaxe(enumerate(lst))

Try:

argmax([1,6,3,77,3,55,23])

def argmaxd(dct):
"""returns the arg max of a dictionary dct
return argmaxe(dct.items())

Try:

arxmaxd({2:5,5:9,7:73})

nnn

Exercise 1.2 Change argmaxe to have an optional argument that specifies whether
you want the “first”, “last” or a “random” index of the maximum value returned.
If you want the first or the last, you don’t need to keep a list of the maximum
elements. Enable the other methods to have this optional argument, if appropriate.

1.7.3 Probability

For many of the simulations, we want to make a variable True with some prob-
ability. flip(p) returns True with probability p, and otherwise returns False.

utilities.py — (continued)

def flip(prob):
"""return true with probability prob"""
return random.random() < prob

The select_from_dist method takes in a item : probability dictionary, and
returns one of the items in proportion to its probability. The probabilities
should sum to 1 or more. If they sum to more than one, the excess is ignored.

utilities.py — (continued)

def select_from_dist(item_prob_dist):
""" returns a value from a distribution.
item_prob_dist is an item:probability dictionary, where the
probabilities sum to 1.
returns an item chosen in proportion to its probability
ranreal = random.random()
for (it,prob) in item_prob_dist.items():
if ranreal < prob:
return it
else:
ranreal -= prob
raise RuntimeError(f"{item_prob_dist} is not a probability
distribution™)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

63
64
65
66
67
68
69
70

72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

1.8. Testing Code 21

1.8 Testing Code

It is important to test code early and test it often. We include a simple form of
unit test. In your code, you should do more substantial testing than done here.
Make sure you should also test boundary cases.

The following code tests argmax, but only if utilities is loaded in the top-
level. If it is loaded in a module the test code is not run. The value of the
current module is in __name__ and if the module is run at the top-level, its
valueis "__main__". See https://docs.python.org/3/library/_main__.html.

utilities.py — (continued)

def test():
"""Test part of utilities
assert argmax([1,6,55,3,55,23]) in [2,4]
print(”"Passed unit test in utilities”)
print("run test_aipython() to test (almost) everything")

nnn

n

if __name__ == "__main_
test()

",

The following imports all of the python code and does a simple check of all of
AlPython that has automatic checks. If you develop new algorithms or tests,
add them here!

utilities.py — (continued)

def test_aipython():
import pythonDemo, display
Agents: currently no tests
import agents, agentBuying, agentEnv, agentMiddle, agentTop,

agentFollowTarget

Search:
print("x*xxx*x testing Search x*xxx'")
import searchGeneric, searchBranchAndBound, searchExample, searchTest
searchGeneric.test(searchGeneric.AStarSearcher)
searchBranchAndBound. test (searchBranchAndBound.DF_branch_and_bound)
searchTest.run(searchExample.probleml, "Problem 1")
import searchGUI, searchMPP, searchGrid
CSP
print("\n*x*x*xx testing CSP *x*xx")
import cspExamples, cspDFS, cspSearch, cspConsistency, cspSLS
cspExamples.test_csp(cspDFS.dfs_solvel)
cspExamples. test_csp(cspSearch.solver_from_searcher)
cspExamples. test_csp(cspConsistency.ac_solver)
cspExamples. test_csp(cspConsistency.ac_search_solver)
cspExamples.test_csp(cspSLS.sls_solver)
cspExamples.test_csp(cspSLS.any_conflict_solver)
import cspConsistencyGUI, cspSoft
Propositions
print("\n**xxx testing Propositional Logic *xxxx")

https://aipython.org Version 0.9.15 December 23, 2024

https://docs.python.org/3/library/__main__.html
https://aipython.org

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122

123

124

125

126
127
128
129
130
131
132
133
134
135
136
137
138

22

1. Python for Artificial Intelligence

import logicBottomUp, logicTopDown, logicExplain, logicAssumables,
logicNegation

logicBottomUp.test()

logicTopDown. test()

logicExplain.test()

logicNegation.test()

Planning

print("\nxx*xx testing Planning *x*x*x")

import stripsHeuristic

stripsHeuristic.test_forward_heuristic()

stripsHeuristic.test_regression_heuristic()

import stripsCSPPlanner, stripsPOP

Learning

print("\nxx*xx testing Learning *x*x*x")

import learnProblem, learnNolInputs, learnDT, learnLinear

learnNoInputs.test_no_inputs(training_sizes=[4])

data = learnProblem.Data_from_file('data/carbool.csv', target_index=-1,
seed=123)

learnDT.testDT(data, print_tree=False)

learnLinear.test()

import learnCrossValidation, learnBoosting

Deep Learning: currently no tests

import learnNN

Uncertainty

print("\nxx*xx testing Uncertainty #x*x*x")

import probGraphicalModels, probRC, probVE, probStochSim

probGraphicalModels.InferenceMethod. testIM(probRC.ProbSearch)

probGraphicalModels. InferenceMethod. testIM(probRC.ProbRC)

probGraphicalModels.InferenceMethod. testIM(probVE.VE)

probGraphicalModels.InferenceMethod. testIM(probStochSim.RejectionSampling,
threshold=0.1)

probGraphicalModels. InferenceMethod. testIM(probStochSim.LikelihoodWeighting,
threshold=0.1)

probGraphicalModels.InferenceMethod. testIM(probStochSim.ParticleFiltering,
threshold=0.1)

probGraphicalModels.InferenceMethod. testIM(probStochSim.GibbsSampling,
threshold=0.1)

import probHMM, problLocalization, probDBN

Learning under uncertainty: currently no tests

import learnBayesian, learnKMeans, learntM

Causality: currently no tests

import probDo, probCounterfactual

Planning under uncertainty

print("\nxx*xx testing Planning under Uncertainty xx*xx")

import decnNetworks

decnNetworks. test(decnNetworks. fire_dn)

import mdpExamples

mdpExamples. test_MDP(mdpExamples.partyMDP)

import mdpGUI

Reinforcement Learning:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

139
140
141
142
143

144
145

146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163

1.8. Testing Code

print("\n*x**xx testing Reinforcement Learning **xxx")

import rlQLearner

rlQLearner.test_RL(rlQLearner.Q_learner, alpha_fun=lambda k:10/(9+k))

import rlQExperienceReplay

rlQLearner.test_RL(rlQExperienceReplay.Q_ER_learner, alpha_fun=lambda
k:10/(9+k))

import rlStochasticPolicy

rlQLearner.test_RL(rlStochasticPolicy.StochasticPIAgent,
alpha_fun=lambda k:10/(9+k))

import rlModellearner

rlQLearner.test_RL(rlModellLearner.Model_based_reinforcement_learner)

import rlFeatures

rlQLearner.test_RL(rlFeatures.SARSA_LFA_learner,
es_kwargs={"'epsilon':1}, eps=4)

import rlQExperienceReplay, rlModellearner, rlFeatures, rlGUI

Multiagent systems: currently no tests

import rlStochasticPolicy, rlGameFeature

Individuals and Relations

print("\n*x*xx testing Datalog and Logic Programming xx*xx")

import relnExamples

relnExamples.test_ask_all()

Knowledge Graphs and Ontologies

print("\n*x**xx testing Knowledge Graphs and Ontologies **x*x")

import knowledgeGraph, knowledgeReasoning

knowledgeGraph.test_kg()

Relational Learning: currently no tests

import relnCollFilt, relnProbModels

print("\n*x*xx End of Testing*xx*x")

23

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Chapter 2

Agent Architectures and
Hierarchical Control

This implements the controllers described in Chapter 2 of Poole and Mack-
worth|[2023]. It defines an architecture that is also used by reinforcement learn-
ing (Chapter[13) and multiagent learning (Section [14.2).

AlPython only provides sequential implementations of the control. More
sophisticated version may have them run concurrently. Higher-levels call lower-
levels. The higher-levels calling the lower-level works in simulated environ-
ments where the lower-level are written to make sure they return (and don’t
go on forever), and the higher level doesn’t take too long (as the lower-levels
will wait until called again). More realistic architecture have the layers running
concurrently so the lower layer can keep reacting while the higher layers are
carrying out more complex computation.

2.1 Representing Agents and Environments

Both agents and the environment are treated as objects in the sense of object-
oriented programming, with an internal state they maintain, and can evaluate
methods. In this chapter, only a single agent is allowed; Section[14.2]allows for
multiple agents.

An environment takes in actions of the agents, updates its internal state
and returns the next percept, using the method do.

An agent implements the method select_action that takes a percept and
returns the next action, updating its internal state as appropriate.

The methods do and select_action are chained together to build a simula-
tor. Initially the simulator needs either an action or a percept. There are two
variants used:

25

11
12
13
14
15
16
17
18
19
20
21
22
23

25
26
27
28
29
30
31
32
33

26 2. Agent Architectures and Hierarchical Control

* Anagentimplements the initial_action(percept) method which is used
initially. This is the method used in the reinforcement learning chapter

(page315).

¢ The environment implements the initial_percept() method which gives
the initial percept for the agent. This is the method is used in this chapter.

The state of the agent and the state of the environment are represented us-
ing standard Python variables, which are updated as the state changes. The
percept and the actions are represented as variable-value dictionaries.

Agent and Environment are subclasses of Displayable so that they can use
the display method described in Section|1.7.1} raise NotImplementedError()
is a way to specify an abstract method that needs to be overridden in any im-
plemented agent or environment.

agents.py — Agent and Controllers

from display import Displayable

class Agent(Displayable):

def initial_action(self, percept):
"""return the initial action.
return self.select_action(percept) # same as select_action

nnn

def select_action(self, percept):
"""return the next action (and update internal state) given percept
percept is variable:value dictionary

nnn

raise NotImplementedError("go") # abstract method

The environment implements a do(action) method where actionis a variable-
value dictionary. This returns a percept, which is also a variable-value dictio-
nary. The use of dictionaries allows for structured actions and percepts.

Note that

agents.py — (continued)

class Environment(Displayable):
def initial_percept(self):
"""returns the initial percept for the agent
raise NotImplementedError("initial_percept”) # abstract method

nnn

def do(self, action):
"""does the action in the environment
returns the next percept """
raise NotImplementedError("Environment.do") # abstract method

The simulator is initialized with initial_percept and then the agent and
the environment take turns in updating their states and returning the action
and the percept. This simulator runs for n steps. A slightly more sophisticated
simulator could run until some stopping condition.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

11
12
13

2.2. Paper buying agent and environment 27

agents.py — (continued)
class Simulate(Displayable):
"""simulate the interaction between the agent and the environment
for n time steps.
def __init__(self,agent, environment):
self.agent = agent
self.env = environment
self.percept = self.env.initial_percept()
self.percept_history = [self.percept]
self.action_history = []

def go(self, n):
for i in range(n):
action = self.agent.select_action(self.percept)
self.display(2,f"i={i} action={action}")
self.percept = self.env.do(action)
self.display(2,f" percept={self.percept}")

2.2 Paper buying agent and environment

To run the demo, in folder “aipython”, load “agents.py”, using e.g.,
ipython -i agentBuying.py, and copy and paste the commented-out
commands at the bottom of that file.

This is an implementation of Example 2.1 of [Poole and Mackworth| [2023].
You might get different plots to Figures 2.2 and 2.3 as there is randomness in
the environment.

2.2.1 The Environment

The environment state is given in terms of the time and the amount of paper in
stock. It also remembers the in-stock history and the price history. The percept
consists of the price and the amount of paper in stock. The action of the agent
is the number to buy.

Here we assume that the price changes are obtained from the price_delta
list which gives the change in price for each time. When the time is longer than
the list, it repeats the list. Note that the sum of the changes is greater than zero,
so that prices tend to increase. There is also randomness (noise) added to the
prices. The agent cannot access the price model; it just observes the prices and
the amount in stock.

agentBuying.py — Paper-buying agent

import random
from agents import Agent, Environment, Simulate
from utilities import select_from_dist

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41

42
43
44
45
46
47

48
49
50
51

28 2. Agent Architectures and Hierarchical Control

class TP_env(Environment):
price_delta = [0, 0, @, 21, 0, 20, 0, -64, 0, 0, 23, 0, 0, 0, -35,
o, 76, 0, -41, o, o0, 0, 21, @, 5, o0, 5, 0, @, @, 5, @, -15, @, 5,
e, 5, o, -115, o, 115, o, 5, o, -15, @, 5, @, 5, 0, @, @, 5, 0,
-59, o, 44, o, 5, o, 5, 0, 0, @, 5, o, -65, 50, @, 5, @, 5, 0, O,
0, 5, 0]
sd = 5 # noise standard deviation

def __init__(self):
"""naper buying agent
self.time=0
self.stock=20
self.stock_history
self.price_history

nnn

[1 # memory of the stock history
[1 # memory of the price history

def initial_percept(self):
"""return initial percept"""
self.stock_history.append(self.stock)
self.price = round(234+self.sdxrandom.gauss(0,1))
self.price_history.append(self.price)
return {'price': self.price,
"instock': self.stock}

def do(self, action):
"""does action (buy) and returns percept consisting of price and
instock”""
used = select_from_dist({6:0.1, 5:0.
used = select_from_dist({7:0.1, 6:
2:0.1}) # uses more paper
bought = action['buy']
self.stock = self.stock+bought-used
self.stock_history.append(self.stock)
self.time += 1
self.price = round(self.price
+ self.price_deltal[self.time%len(self.price_delta)] #
repeating pattern
+ self.sd*random.gauss(@,1)) # plus randomness
self.price_history.append(self.price)
return {'price': self.price,
"instock': self.stock}

, 4:0.
5:

1 , 3:0.
0.2, 4:

1 , 2:0.2, 1:0.23})
0.2, 3

3
0.3, 3:0.1,

2.2.2 The Agent

The agent does not have access to the price model but can only observe the
current price and the amount in stock. It has to decide how much to buy.

The belief state of the agent is an estimate of the average price of the paper,
and the total amount of money the agent has spent.

agentBuying.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

77
78
79
80
81

83
84
85
86
87
88
89
90
91
92
93

2.2. Paper buying agent and environment

class TP_agent(Agent):
def __init__(self):
self.spent = @
percept = env.initial_percept()
self.ave = self.last_price = percept['price']
self.instock = percept['instock']
self.buy_history = []

def select_action(self, percept):
"""return next action to carry out
self.last_price = percept['price']
self.ave = self.ave+(self.last_price-self.ave)*0.05
self.instock = percept['instock']
if self.last_price < 0.9*self.ave and self.instock < 60:

tobuy = 48

elif self.instock < 12:
tobuy = 12

else:
tobuy = @

self.spent += tobuy*self.last_price
self.buy_history.append(tobuy)
return {'buy': tobuy?}

Set up an environment and an agent. Uncomment the last lines to run the agent

for 90 steps, and determine the average amount spent.

agentBuying.py — (continued)

29

env = TP_env()

ag = TP_agent()

sim = Simulate(ag,env)

#sim.go(90)

#ag.spent/env.time ## average spent per time period

2.2.3 Plotting
The following plots the price and number in stock history:

agentBuying.py — (continued)

import matplotlib.pyplot as plt

class Plot_history(object):
"""Set up the plot for history of price and number in stock”"”
def __init__(self, ag, env):

self.ag = ag
self.env = env
plt.ion()

plt.xlabel("Time")
plt.ylabel("Value")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

30 2. Agent Architectures and Hierarchical Control

300 A
250 A
o 200 A u —— Price
(_:0 In stock
> 150 A I Bought
100 4
50 4 ’ | ’ ’ ,
0 T i i T l i I I‘ T II"___

0 20 40 60 80

Figure 2.1: Percept and command traces for the paper-buying agent

def plot_env_hist(self):
"""plot history of price and instock”"”
num = len(env.stock_history)
plt.plot(range(num),env.price_history,label="Price")
plt.plot(range(num),env.stock_history,label="In stock")
plt.legend()
#plt.draw()

def plot_agent_hist(self):
"""nlot history of buying
num = len(ag.buy_history)
plt.bar(range(1,num+1), ag.buy_history, label="Bought")
plt.legend()
#plt.draw()

nnn

sim.go(100); print(f"agent spent ${ag.spent/1003}")
pl = Plot_history(ag,env); pl.plot_env_hist(); pl.plot_agent_hist()

Figure 2.1 shows the result of the plotting in the previous code.

Exercise 2.1 Design a better controller for a paper-buying agent.
¢ Justify a performance measure that is a fair comparison. Note that minimiz-
ing the total amount of money spent may be unfair to agents who have built

up a stockpile, and favors agents that end up with no paper.

* Give a controller that can work for many different price histories. An agent

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19

2.3. Hierarchical Controller 31

can use other local state variables, but does not have access to the environ-
ment model.

¢ s it worthwhile trying to infer the amount of paper that the home uses?
(Try your controller with the different paper consumption commented out
in TP_env.do.)

2.3 Hierarchical Controller

To run the hierarchical controller, in folder ”aipython”, load
“agentTop.py”, using e.g., ipython -i agentTop.py, and copy and
paste the commands near the bottom of that file.

In this implementation, each layer, including the top layer, implements the en-
vironment class, because each layer is seen as an environment from the layer
above.

The robot controller is decomposed as follows. The world defines the walls.
The body describes the robot’s position, and its physical abilities such as whether
its whisker sensor of on. The body can be told to steer left or right or to go
straight. The middle layer can be told to go to x-y positions, avoiding walls.
The top layer knows about named locations, such as the storage room and lo-
cation 0103, and their x-y positions. It can be told a sequence of locations, and
tells the middle layer to go to the positions of the locations in turn.

2.3.1 World

The world defines the walls. This is not implemented as an environment as
it does not change. If the agent could move walls, it should be made into an
environment.

agentEnv.py — Agent environment

import math
from display import Displayable

class Rob_world(Displayable):
def __init__(self,walls = {}):
"""walls is a set of line segments
where each line segment is of the form ((x@,y@),(x1,y1))

nnn

self.walls = walls

2.3.2 Body

Rob_body defines everything about the agent body;, its position and orientation
and whether its whisker sensor is on. It implements the Environment class as

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42

43
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58

59

60

61
62

32 2. Agent Architectures and Hierarchical Control

it is treated as an environment by the higher layers. It can be told to turn left
or right or to go straight.

agentEnv.py — (continued)

import math
from agents import Environment
import matplotlib.pyplot as plt
import time

class Rob_body(Environment):
def __init__(self, world, init_pos=(0,0,90)):
""" world is the current world
init_pos is a triple of (x-position, y-position, direction)
direction is in degrees; 0 is to right, 90 is straight-up, etc
self.world = world
self.rob_x, self.rob_y, self.rob_dir = init_pos
self.turning_angle = 18 # degrees that a left makes
self.whisker_length = 6 # length of the whisker
self.whisker_angle = 30 # angle of whisker relative to robot
self.crashed = False
The following control how it is plotted
self.plotting = True # whether the trace is being plotted
self.sleep_time = 0.05 # time between actions (for real-time
plotting)
The following are data structures maintained:
self.history = [(self.rob_x, self.rob_y)] # history of (x,y)
positions
self.wall_history = [] # history of hitting the wall

def percept(self):
return {'rob_x_pos':self.rob_x, 'rob_y_pos':self.rob_y,
'rob_dir':self.rob_dir, 'whisker':self.whisker(),
'crashed' :self.crashed?}
initial_percept = percept # use percept function for initial percept too

def do(self,action):
""" action is {'steer':direction}
direction is 'left', 'right' or 'straight'.
Returns current percept.
if self.crashed:
return self.percept()
direction = action['steer']
compass_deriv =
{'left':1, ' 'straight':0, 'right':-1}[direction]*self.turning_angle
self.rob_dir = (self.rob_dir + compass_deriv +360)%360 # make in
range [0,360)
rob_x_new = self.rob_x + math.cos(self.rob_dir*math.pi/180)
rob_y_new = self.rob_y + math.sin(self.rob_dir*math.pi/180)
path = ((self.rob_x,self.rob_y), (rob_x_new,rob_y_new))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

63

64
65
66
67
68
69
70
71
72
73
74
75

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

2.3. Hierarchical Controller

if any(line_segments_intersect(path,wall) for wall in
self.world.walls):
self.crashed = True
self.display(1, "*Crashedx")
if self.plotting:

plt.plot([self.rob_x1,[self.rob_y],"rx" markersize=20.0)

plt.draw()
self.rob_x, self.rob_y = rob_x_new, rob_y_new
self.history.append((self.rob_x, self.rob_y))
if self.plotting and not self.crashed:
plt.plot([self.rob_x1,[self.rob_y],"go")
plt.draw()
plt.pause(self.sleep_time)
return self.percept()

agentEnv.py — (continued)

33

The Boolean whisker method returns True when the the robots whisker sensor
intersects with a wall.

def whisker(self):

nnn

nnn

whisk_ang_world = (self.rob_dir-self.whisker_angle)*math.pi/180

angle in radians in world coordinates

wx = self.rob_x + self.whisker_length * math.cos(whisk_ang_world)
wy = self.rob_y + self.whisker_length * math.sin(whisk_ang_world)

whisker_line = ((self.rob_x,self.rob_y), (wx,wy))
hit = any(line_segments_intersect(whisker_line,wall)
for wall in self.world.walls)
if hit:
self.wall_history.append((self.rob_x, self.rob_y))
if self.plotting:
plt.plot([self.rob_x],[self.rob_yl,"ro")
plt.draw()
return hit

def line_segments_intersect(linea, lineb):

nnn

returns true if the line segments, linea and lineb intersect.
A line segment is represented as a pair of points.
A point is represented as a (x,y) pair.
((x@a,y0a), (x1a,yla)) linea
((x0b,y@b), (x1b,y1b)) = lineb
da, db = x1a-x0@a, x1b-x@b
ea, eb = yla-y@a, ylb-yob
denom = dbxea-ebxda
if denom==0: # line segments are parallel
return False
cb = (da*(y@b-y0a)-eax(x0b-x0a))/denom # intersect along line b
if cbh<@ or cb>1:
return False # intersect is outside line segment b

returns true whenever the whisker sensor intersects with a wall

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

109
110
111
112
113
114
115

11
12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

34 2. Agent Architectures and Hierarchical Control

ca = (db*(y@b-y0a)-ebx(x0b-x0a))/denom # intersect along line a
return 0<=ca<=1 # intersect is inside both line segments

Test cases:

assert line_segments_intersect(((0,0),(1,1)),((1,0),(0,1)))

assert not line_segments_intersect(((9,0),(1,1)),((1,0),(0.6,0.4)))
assert line_segments_intersect(((0,0),(1,1)),((1,0),(0.4,0.6)))

2.3.3 Middle Layer

The middle layer acts like both a controller (for the body layer) and an envi-
ronment for the upper layer. It has to tell the body how to steer. Thus it calls
env.do(-), where env is the body. It implements do(\cdot) for the top layer,
where the action specifies an x-y position to go to and a timeout.

agentMiddle.py — Middle Layer

from agents import Environment
import math

class Rob_middle_layer(Environment):
def __init__(self, lower):

"""The lower-level for the middle layer is the body.

self.lower = lower

self.percept = lower.initial_percept()

self.straight_angle = 11 # angle that is close enough to straight
ahead

self.close_threshold = 2 # distance that is close enough to arrived

self.close_threshold_squared = self.close_threshold**2 # just
compute it once

def initial_percept(self):
return {}

def do(self, action):
"""action is {'go_to':target_pos, 'timeout':timeout}
target_pos is (x,y) pair
timeout is the number of steps to try
returns {'arrived':True} when arrived is true
or {'arrived':False} if it reached the timeout
if "timeout' in action:
remaining = action['timeout']
else:
remaining = -1 # will never reach @
target_pos = action['go_to']
arrived = self.close_enough(target_pos)
while not arrived and remaining != 0:
self.percept = self.lower.do({"steer":self.steer(target_pos)})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

42
43
44

46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76

11

2.3. Hierarchical Controller 35

remaining -= 1
arrived = self.close_enough(target_pos)
return {'arrived':arrived}

The following method determines how to steer depending on whether the goal
is to the right or the left of where the robot is facing.

agentMiddle.py — (continued)

def steer(self, target_pos):
if self.percept['whisker']:
self.display(3, 'whisker on', self.percept)
return "left”
else:
return self.head_towards(target_pos)

def head_towards(self, target_pos):
""" ogiven a target position, return the action that heads
towards that position
gx,gy = target_pos
rx,ry = self.percept['rob_x_pos'],self.percept['rob_y_pos']
goal_dir = math.acos((gx-rx)/math.sqrt((gx-rx)*(gx-rx)
+(gy-ry)*(gy-ry)))*180/math.pi
if ry>gy:
goal_dir = -goal_dir
goal_from_rob = (goal_dir - self.percept['rob_dir']+540)%360-180
assert -180 < goal_from_rob <= 180
if goal_from_rob > self.straight_angle:
return "left”
elif goal_from_rob < -self.straight_angle:
return "right”
else:
return "straight”

def close_enough(self, target_pos):
"""True when the robot's position is within close_threshold of
target_pos
gx,gy = target_pos
rx,ry = self.percept['rob_x_pos'],self.percept['rob_y_pos']
return (gx-rx)*x*2 + (gy-ry)**2 <= self.close_threshold_squared

2.3.4 Top Layer

The top layer treats the middle layer as its environment. Note that the top layer
is an environment for us to tell it what to visit.

agentTop.py — Top Layer

from display import Displayable

12 | from agentMiddle import Rob_middle_layer

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

13
14
15
16
17

18
19

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35

36

38
39
40
41
42
43
44
45
46
47
48
49

36 2. Agent Architectures and Hierarchical Control

from agents import Environment

class Rob_top_layer(Environment):
def __init__(self, middle, timeout=200, locations = {'mail':(-5,10),
'0103':(50,10), '0109':(100,10), 'storage':(101,51)}
):
"""middle is the middle layer
timeout is the number of steps the middle layer goes before giving
up
locations is a loc:pos dictionary
where loc is a named location, and pos is an (x,y) position.
self.middle = middle
self.timeout = timeout # number of steps before the middle layer
should give up
self.locations = locations

def do(self,plan):
"""carry out actions.
actions is of the form {'visit':list_of_locations?}
It visits the locations in turn.

nnn

to_do = plan['visit']
for loc in to_do:
position = self.locations[loc]
arrived = self.middle.do({'go_to':position,
"timeout':self.timeout})
self.display(1,"Goal”,loc,arrived)

2.3.5 Plotting

The following is used to plot the locations, the walls and (eventually) the move-
ment of the robot. It can either plot the movement if the robot as it is go-
ing (with the default env.plotting = True), or not plot it as it is going (setting
env.plotting = False; in this case the trace can be plotted using pl.plot_run()).

agentTop.py — (continued)

import matplotlib.pyplot as plt

class Plot_env(Displayable):
def __init__(self, body,top):

"""sets up the plot
self.body = body
self.top = top
plt.ion()
plt.axes().set_aspect('equal')
self.redraw()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

2.3. Hierarchical Controller 37

torpge
50 g

40 A
30 1
20 A

10 4 4maiI 0103 09

0 20 40 60 80 100

Figure 2.2: A trace of the trajectory of the agent. Red dots correspond to the
whisker sensor being on; the green dot to the whisker sensor being off. The agent
starts at position (0,0) facing up.

def redraw(self):
plt.clf()
for wall in self.body.world.walls:
((x0,y0), (x1,y1)) = wall
plt.plot([x@,x11,[y0,y1],"-k",linewidth=3)
for loc in self.top.locations:
(x,y) = self.top.locations[loc]
plt.plot([x],Ly], k<"
plt.text(x+1.0,y+0.5,1loc) # print the label above and to the
right
plt.plot([self.body.rob_x],[self.body.rob_y],"go")
plt.gca().figure.canvas.draw()
if self.body.history or self.body.wall_history:
self.plot_run()

def plot_run(self):
"""pnlots the history after the agent has finished.
This is typically only used if body.plotting==False
if self.body.history:
xs,ys = zip(xself.body.history)
plt.plot(xs,ys,"go")
if self.body.wall_history:
wxs,wys = zip(*self.body.wall_history)
plt.plot(wxs,wys,"ro")

The following code plots the agent as it acts in the world. Figure 2.2|shows
the result of the top.do

agentTop.py — (continued)

‘from agentEnv import Rob_body, Rob_world

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

38 2. Agent Architectures and Hierarchical Control

30 A

201

104

dal

-104

—-204

T T T T T T T T
0 10 20 30 40 50 60 70

Figure 2.3: Robot trap

76
77 |world = Rob_world({((20,0),(30,20)), ((70,-5),(70,25))})
78 | body = Rob_body(world)

79 |middle = Rob_middle_layer (body)

80 | top = Rob_top_layer(middle)

81

82 |# try:

83 |# pl=Plot_env(body, top)

84 |# top.do({'visit':['0109', 'storage', '0109','0103'1})
85 |# You can directly control the middle layer:

86 |# middle.do({'go_to':(30,-10), 'timeout':200})

87 |# Can you make it crash?

88

89 |if __name__ == "__main__":

90 print("Try: Plot_env(body,top);

top.do({'visit':['0109"', 'storage', '0109','0103"'1})")

Exercise 2.2 The following code implements a robot trap (Figure[2.3). Itis called
a trap because, once it has hit the wall, it needs to follow the wall, but local features
are not enough for it to know when it can head to the goal. Write a controller that
can escape the “trap” and get to the goal. See Exercise 2.4 in the textbook for hints.

agentTop.py — (continued)

92 |# Robot Trap for which the current controller cannot escape:
93 | trap_env = Rob_world({((10,-21),(10,0)), ((10,10),(10,31)),

94 ((30,-10),(30,0)), ((30,10),(30,20)),

95 ((50,-21),(50,31)), ((10,-21),(50,-21)),
9% ((10,0),(30,0)), ((10,10),(30,10)),

97 ((10,31),(50,31))})

98 | trap_body = Rob_body(trap_env,init_pos=(-1,0,90))

99 | trap_middle = Rob_middle_layer(trap_body)

100 | trap_top = Rob_top_layer(trap_middle,locations={"'goal': (71,0)})
101

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

102
103
104

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42

43
44

2.3. Hierarchical Controller 39

Robot trap exercise:
pl=Plot_env(trap_body, trap_top)
trap_top.do({'visit':['goal']l})

Plotting for Moving Targets

Exercise 2.5 of Poole and Mackworth|[2023] refers to targets that can move. The
following implements targets than can be moved using the mouse. To move a
target using the mouse, press on the target, move it, and release at the desired
location. This can be done while the animation is running.

agentFollowTarget.py — Plotting for moving targets

import matplotlib.pyplot as plt
from agentTop import Plot_env, body, top

class Plot_follow(Plot_env):
def __init__(self, body, top, epsilon=2.5):

"""pnlot the agent in the environment.

epsilon is the threshold how how close someone needs to click to
select a location.

Plot_env.__init__(self, body, top)

self.epsilon = epsilon

self.canvas = plt.gca().figure.canvas

self.canvas.mpl_connect('button_press_event', self.on_press)

self.canvas.mpl_connect('button_release_event', self.on_release)

self.canvas.mpl_connect('motion_notify_event', self.on_move)

self.pressloc = None

self.pressevent = None

for loc in self.top.locations:
self.display(2,f" 1loc {loc} at {self.top.locations[loc]}")

def on_press(self, event):
self.display(2,'v',end="")
self.display(2,f"Press at ({event.xdata},{event.ydata}")
for loc in self.top.locations:
1x,1ly = self.top.locations[loc]
if abs(event.xdata- 1x) <= self.epsilon and abs(event.ydata-
ly) <= self.epsilon :
self.pressloc = loc
self.pressevent = event
self.display(2, "moving”,loc)

def on_release(self, event):
self.display(2,'"',end="")
if self.pressloc is not None: #and event.inaxes ==
self.pressevent.inaxes:
self.top.locations[self.pressloc] = (event.xdata, event.ydata)
self.display(1,f"Placing {self.pressloc} at {(event.xdata,
event.ydata)}")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61

40 2. Agent Architectures and Hierarchical Control

self.pressloc = None
self.pressevent = None

def on_move(self, event):
if self.pressloc is not None: # and event.inaxes ==
self.pressevent.inaxes:
self.display(2,'-",end="")

self.top.locations[self.pressloc] = (event.xdata, event.ydata)

self.redraw()
else:
self.display(2,'."',end="")

try:
pl=Plot_follow(body, top)
top.do({'visit':['0109', 'storage', '0109', '0103"'1})

n n,

if __name__ == "__main__

print("Try: Plot_follow(body, top);
top.do({'visit':['0109"', 'storage', '0109','0103"'1})")
Exercise 2.3 Do Exercise 2.5 of[Poole and Mackworth|[2023].

Exercise 2.4 Change the code to also allow walls to move.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16

Chapter 3

Searching for Solutions

3.1 Representing Search Problems

A search problem consists of:
¢ astart node

* aneighbors function that given a node, returns an enumeration of the arcs
from the node

* a specification of a goal in terms of a Boolean function that takes a node
and returns true if the node is a goal

¢ a (optional) heuristic function that, given a node, returns a non-negative
real number. The heuristic function defaults to zero.

As far as the searcher is concerned a node can be anything. If multiple-path
pruning is used, a node must be hashable. In the simple examples, it is a string,
but in more complicated examples (in later chapters) it can be a tuple, a frozen
set, or a Python object.

In the following code, “raise NotImplementedError()” is a way to specify
that this is an abstract method that needs to be overridden to define an actual
search problem.

searchProblem.py — representations of search problems

from display import Displayable
import matplotlib.pyplot as plt
import random

class Search_problem(Displayable):
"""A search problem consists of:

41

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

42 3. Searching for Solutions

* a start node

* a neighbors function that gives the neighbors of a node

* a specification of a goal

* a (optional) heuristic function.

The methods must be overridden to define a search problem."""

def start_node(self):
"""returns start node
raise NotImplementedError("start_node"”) # abstract method

nnn

def is_goal(self,node):

is True if node is a goal"""
raise NotImplementedError("is_goal") # abstract method

def neighbors(self,node):
"""returns a list (or enumeration) of the arcs for the neighbors of
node”””
raise NotImplementedError("neighbors”) # abstract method

def heuristic(self,n):
"""Gives the heuristic value of node n.
Returns @ if not overridden."""
return 0

The neighbors is a list or enumeration of arcs. A (directed) arc is the pair
(from_node, to_node), but can also contain a non-negative cost (which defaults
to 1) and can be labeled with an action. The action is not used for the search,
but is useful for displaying and for plans (sequences of of actions).

searchProblem.py — (continued)

class Arc(object):

"""An arc consists of
a from_node and a to_node node
a (non-negative) cost
an (optional) action

def __init__(self, from_node, to_node, cost=1, action=None):
self.from_node = from_node
self.to_node = to_node
self.cost = cost
assert cost >= @, (f"Cost cannot be negative: {self}, cost={cost}")
self.action = action

def __repr__(self):
"""string representation of an arc
if self.action:
return f"{self.from_node} --{self.action}--> {self.to_node}"
else:
return f"{self.from_node} --> {self.to_node}"

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

3.1. Representing Search Problems 43

3.1.1 Explicit Representation of Search Graph

The first representation of a search problem is from an explicit graph (as op-
posed to one that is generated as needed).
An explicit graph consists of

¢ alist or set of nodes

¢ alist or set of arcs

e astart node

* alist or set of goal nodes

¢ (optionally) a hmap dictionary that maps a node to a heuristic value
for that node. This could conceivably have been part of nodes, but the
heuristic value depends on the goals.

¢ (optionally) a positions dictionary that maps nodes to their x-y position.
This is for showing the graph visually.

To define a search problem, you need to define the start node, the goal predi-
cate, the neighbors function and, for some algorithms, a heuristic function.

searchProblem.py — (continued)

class Search_problem_from_explicit_graph(Search_problem):
"""A search problem from an explicit graph.

nnn

def __init__(self, title, nodes, arcs, start=None, goals=set(), hmap={},
positions=None):
""" A search problem consists of':
list or set of nodes
list or set of arcs
start node
list or set of goal nodes
hmap: dictionary that maps each node into its heuristic value.
positions: dictionary that maps each node into its (x,y) position
self.title = title
self.neighs = {}
self.nodes = nodes
for node in nodes:
self.neighs[node]=[]
self.arcs = arcs
for arc in arcs:
self.neighs[arc.from_node].append(arc)
self.start = start
self.goals = goals
self.hmap = hmap
if positions is None:

X % % % X X%

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

86

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

117
118
119
120
121
122
123
124
125
126
127
128

44 3. Searching for Solutions

self.positions = {node: (random.random(),random.random()) for
node in nodes}
else:
self.positions = positions

def start_node(self):
"""returns start node
return self.start

nnn

def is_goal(self,node):

is True if node is a goal"""
return node in self.goals

def neighbors(self,node):
"""returns the neighbors of node (a list of arcs)
return self.neighs[node]

nnn

def heuristic(self,node):
"""Gives the heuristic value of node n.
Returns @ if not overridden in the hmap.
if node in self.hmap:
return self.hmap[node]
else:
return @

nnn

def __repr__(self):
"""returns a string representation of the search problem
res=""
for arc in self.arcs:
res += f"{arc}. "
return res

nnn

Graphical Display of a Search Graph

The show() method displays the graph, and is used for the figures in this doc-
ument.

searchProblem.py — (continued)

def show(self, fontsize=10, node_color='orange', show_costs = True):
"""Show the graph as a figure
self.fontsize = fontsize
self.show_costs = show_costs
plt.ion() # interactive
ax = plt.figure().gca()
ax.set_axis_off()
plt.title(self.title, fontsize=fontsize)
self.show_graph(ax, node_color)

def show_graph(self, ax, node_color='orange'):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

3.1. Representing Search Problems 45

bbox =
dict(boxstyle="round4,pad=1.0,rounding_size=0.5",facecolor=node_color)
for arc in self.arcs:
self.show_arc(ax, arc)
for node in self.nodes:
self.show_node(ax, node, node_color = node_color)

def show_node(self, ax, node, node_color):
X,y = self.positions[nhode]
ax.text(x,y,node,bbox=dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
facecolor=node_color),
ha='center',va='center', fontsize=self.fontsize)

def show_arc(self, ax, arc, arc_color='black', node_color='white'):
from_pos = self.positions[arc.from_node]
to_pos = self.positions[arc.to_node]
ax.annotate(arc.to_node, from_pos, xytext=to_pos,
arrowprops={"'arrowstyle':'<|-", 'linewidth': 2,
'color':arc_color},
bbox=dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
facecolor=node_color),
ha='center',va='center',
fontsize=self.fontsize)
Add costs to middle of arcs:
if self.show_costs:
ax.text((from_pos[@]+to_pos[0])/2, (from_pos[1]+to_pos[1]1)/2,
arc.cost, bbox=dict(pad=1,fc='w',ec='w"),
ha='center',va='center', fontsize=self.fontsize)

3.1.2 Paths

A searcher will return a path from the start node to a goal node. A Python list
is not a suitable representation for a path, as many search algorithms consider
multiple paths at once, and these paths should share initial parts of the path.
If we wanted to do this with Python lists, we would need to keep copying the
list, which can be expensive if the list is long. An alternative representation is
used here in terms of a recursive data structure that can share subparts.

A path is either:

¢ anode (representing a path of length 0) or

¢ aninitial path, and an arc at the end, where the from_node of the arc is the
node at the end of the initial path.

These cases are distinguished in the following code by having arc=None if the
path has length 0, in which case initial is the node of the path. Note that
we only use the most basic form of Python’s yield for enumerations (Section
1.5.3).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

46 3. Searching for Solutions

searchProblem.py — (continued)

157 |class Path(object):

158 """A path is either a node or a path followed by an arc"""

159

160 def __init__(self,initial,arc=None):

161 """initial is either a node (in which case arc is None) or

162 a path (in which case arc is an object of type Arc)"""

163 self.initial = initial

164 self.arc=arc

165 if arc is None:

166 self.cost=0

167 else:

168 self.cost = initial.cost+arc.cost

169

170 def end(self):

171 """returns the node at the end of the path”"""

172 if self.arc is None:

173 return self.initial

174 else:

175 return self.arc.to_node

176

177 def nodes(self):

178 """enumerates the nodes of the path from the last element backwards

179 nn

180 current = self

181 while current.arc is not None:

182 yield current.arc.to_node

183 current = current.initial

184 yield current.initial

185

186 def initial_nodes(self):

187 """enumerates the nodes for the path before the end node.

188 This calls nodes() for the initial part of the path.

189 nen

190 if self.arc is not None:

191 yield from self.initial.nodes()

192

193 def __repr__(self):

194 """returns a string representation of a path""”

195 if self.arc is None:

196 return str(self.initial)

197 elif self.arc.action:

198 return f"{self.initial}\n --{self.arc.action}-->
{self.arc.to_node}"

199 else:

200 return f"{self.initial} --> {self.arc.to_node}"

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11

12
13
14
15
16
17
18
19
20

22
23
24
25
26
27
28
29

3.1. Representing Search Problems 47

% Problem 1
1

Figure 3.1: problem1l

3.1.3 Example Search Problems

The first search problem is one with 5 nodes where the least-cost path is one
with many arcs. See Figure generated using problem1.show(). Note that
this example is used for the unit tests, so the test (in searchGeneric) will need
to be changed if this is changed.

searchExample.py — Search Examples

from searchProblem import Arc, Search_problem_from_explicit_graph,
Search_problem

probleml = Search_problem_from_explicit_graph('Problem 1°',
{'A','B','C','D",'G"},
[Arc('A','B',3), Arc('A','C',1), Arc('B','D',1), Arc('B','G'",3),
Arc('C','B',1), Arc('C','D",3), Arc('D','G', 1)1,
start = 'A',
goals = {'G'},
positions={'A': (0, 1), 'B': (0.5, 0.5), 'C': (0,0.5),
'D': (0.5,0), 'G': (1,0)})

The second search problem is one with 8 nodes where many paths do not lead
to the goal. See Figure

searchExample.py — (continued)

problem2 = Search_problem_from_explicit_graph('Problem 2',
{'A",'B",'C",'D','E',"'G","H","' "'},
[Arc('A','B',1), Arc('B','C',3), Arc('B','D',1), Arc('D','E'",3),
Arc('D','G',1), Arc('A','H',3), Arc('H','J", 11,
start = 'A',
goals = {'G'},
positions={'A': (0, 1), 'B':(0, 3/4), 'C':(0,0), 'D':(1/4,3/4),
'E':(1/4,0), 'G':(2/4,3/4), 'H':(3/4,1), 'J':(3/4,3/4)})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

31
32
33
34
35

37

38
39
40
41
42
43
44
45
46

48 3. Searching for Solutions

Problem 2
® 3 -®
1 1
v v
® 0

Figure 3.2: problem2

The third search problem is a disconnected graph (contains no arcs), where the
start node is a goal node. This is a boundary case to make sure that weird cases
work.

searchExample.py — (continued)

problem3 = Search_problem_from_explicit_graph('Problem 3',
{'a','b','c','d",'e","'g",'h'", "'},
1,
start = 'g',
goals = {'k','g"'})

The simp_delivery_graph is shown Figure This is the same as Figure 3.3
of Poole and Mackworth! [2023]].

searchExample.py — (continued)
simp_delivery_graph = Search_problem_from_explicit_graph("Acyclic Delivery
Graph",
{'A', 'B', 'Cc', 'D', 'E', 'F', 'G', 'H', 'J'},
L Arc('A', 'B', 2),
Arc('A', 'C", 3),
Arc('A', 'D', 4),
Arc('B', 'E', 2),
Arc('B', 'F', 3),
Arc(C'C', 'J", 7),
Arc('D', 'H', 4),
Arc('F', 'D', 2),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

3.1. Representing Search Problems

49

Acyclic Delivery Graph

Figure 3.3: simp_delivery_graph.show()

Arc('H', 'G"', 3),
Arc('J', 'G"', 41,

start = 'A',

goals = {'G'},

hmap = {
'A': T,
'B': 5,
'C': 9,
'D': 6,
'E': 3,
'F': 5,
'G': 0,
'H': 3,
'J': 4,

1

positions = {
'A': (0.4,0.1),
'‘B': (0.4,0.4),
'C': (0.1,0.1),
'D': (0.7,0.1),
'E': (0.6,0.7),
'F': (0.7,0.4),
'G': (0.7,0.9),
'H': (0.9,0.6),
'J': (0.3,0.9)
3

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

73

74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

50 3. Searching for Solutions

Cyclic Delivery Graph

/®

——@

_d

Figure 3.4: cyclic_simp_delivery_graph.show()

<»>N~?\

)

cyclic_simp_delivery_graph is the graph shown Figure This is the
graph of Figure 3.10 of [Poole and Mackworth, 2023]. The heuristic values
are the same as in simp_delivery_graph.

searchExample.py — (continued)

cyclic_simp_delivery_graph = Search_problem_from_explicit_graph("”Cyclic

Delivery Graph”,
{'A", 'B', 'C', 'D', 'E', 'F', 'G"', 'H', 'J'},
L Arc('A', 'B', 2),

Arc('A', 'C', 3),

Arc('A', 'D', 4),

Arc('B', 'E', 2),

Arc('B', 'F', 3),

Arc('C', 'A", 3),

Arc('C', 'J', 6),

Arc('D', 'A', 4),

Arc('D', 'H', 4),

Arc('F', 'B', 3),

Arc('F', 'D', 2),

Arc('G', 'H', 3),

Arc('G', 'J", 4),

Arc('H', 'D', 4),

Arc('H', 'G", 3),

Arc('J', 'C', 6),

Arc('J', 'G', 41,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

3.1. Representing Search Problems 51

start = 'A',

goals = {'G'},

hmap = {
AT,
'B': 5,
'C': 9,
'‘D': 6,
'E': 3,
'F': 5,
'G': 0o,
'H': 3,
'J'. 4,

1

positions = {
'A': (0.4,0.1),
'B': (0.4,0.4),
'C': (0.1,0.1),
'D': (0.7,0.1),
'E': (0.6,0.7),
'F': (0.7,0.4),
'G': (0.7,0.9),
'H': (0.9,0.6),
'J': (0.3,0.9)
by

The next problem is the tree graph shown in Figure and is Figure 3.15
in Poole and Mackworth! [2023].

searchExample.py — (continued)

tree_graph = Search_problem_from_explicit_graph("Tree Graph",

{A', '8', 'c', 'D', 'E', 'F', 'G', 'H'", 'I', 'J", 'K"', 'L", 'M", 'N',
o',
P, 'Q', 'R', 'S", 'T', 'u', 'vV', 'wW', 'X', 'y', 'z', 'AA', 'BB',

'cc',

'DD', 'EE', 'FF', 'GG', 'HH', 'II', 'JJ', 'KK'},

[Arc('A', 'B', 1),
Arc('A', 'C', 1),
Arc('B', 'D', 1),
Arc('B', 'E', 1),
Arc('C', 'F', 1),
Arc('C', 'G', 1),
Arc('D', 'H', 1),
Arc('D', 'I', 1),
Arc('E"', 'J', 1),
Arc('E', 'K', 1),
Arc('F', 'L', 1),
Arc('G', 'M' | 1),
Arc('G', 'N', 1),
Arc('H', '0', 1),
Arc('H', 'P', 1),
Arc('J', 'Q', 1),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

52

3. Searching for Solutions

Tree Graph

Figure 3.5: tree_graph.show(show_costs = False)

Arc('J', 'R', 1),
Arc('L', 'S', 1),
Arc('L', 'T', 1),
Arc('N"', 'U", 1),
Arc('N', 'V', 1),
Arc('0', 'W', 1),
Arc('P', 'X', 1),
Arc('P', 'Y', 1),
Arc('R"', 'Z', 1),
Arc('R', 'AA', 1),
Arc('T', 'BB', 1),
Arc('T', 'CC', 1),
Arc('V', 'DD', 1),
Arc('V', 'EE', 1),
Arc('W', '"FF', 1),
Arc('X', 'GG', 1),
Arc('Y', 'HH', 1),
Arc('AA', 'II', 1),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

3.1. Representing Search Problems

Arc('cc', 'JJ', 1),
Arc('CC', 'KK', 1)

1,

start = 'A',

goals = {'K', 'M', 'T', 'X',

positions = {
'A': (0.5,0.95),
'B': (0.3,0.8),
'C': (0.7,0.8),
'D': (0.2,0.65),
'E': (0.4,0.65),
'F': (0.6,0.65),
'G': (0.8,0.65),
"H': (0.2,0.5),
'I': (0.3,0.5),
'J': (0.4,0.5),
'K': (0.5,0.5),
'L': (0.6,0.5),
‘"M': (0.7,0.5),
‘"N': (0.8,0.5),
'0': (0.1,0.35),
'P': (0.2,0.35),
'Q': (0.3,0.35),
'R': (0.4,0.35),
'S': (0.5,0.35),
'T': (0.6,0.35),
'U': (0.7,0.35),
'V': (0.8,0.35),
"W': (0.1,0.2),
"X': (0.2,0.2),
"Y': (0.3,0.2),
'Z': (0.4,0.2),
'AA": (0.5,0.2),
'BB': (0.6,0.2),
'cC': (0.7,0.2),
'DD': (0.8,0.2),
'EE': (0.9,0.2),
'"FF': (0.1,0.05),
'GG': (0.2,0.05),
"HH': (0.3,0.05),
"II': (0.5,0.05),
'JJ': (0.7,0.05),
'KK': (0.8,0.05)
3

)

tree_graph.show(show_costs =
https://aipython.org

IZI’

False)

"HH'},

Version 0.9.15

53

December 23, 2024

https://aipython.org

54 3. Searching for Solutions

3.2 Generic Searcher and Variants

To run the search demos, in folder “aipython”, load
“searchGeneric.py” , using e.g., ipython -i searchGeneric.py,
and copy and paste the example queries at the bottom of that file.

3.2.1 Searcher

A Searcher for a problem can be asked repeatedly for the next path. To solve a
search problem, construct a Searcher object for the problem and then repeatedly
ask for the next path using search. If there are no more paths, None is returned.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

searchGeneric.py — Generic Searcher, including depth-first and A*

from display import Displayable

class Searcher(Displayable):
"""returns a searcher for a problem.
Paths can be found by repeatedly calling search().
This does depth-first search unless overridden

nnn

def __init__(self, problem):

"""creates a searcher from a problem
self.problem = problem
self.initialize_frontier()

self.num_expanded = 0
self.add_to_frontier(Path(problem.start_node()))
super().__init__Q)

def initialize_frontier(self):
self.frontier = []

def empty_frontier(self):
return self.frontier == []

def add_to_frontier(self,path):
self.frontier.append(path)

def search(self):
"""returns (next) path from the problem's start node
to a goal node.
Returns None if no path exists.
while not self.empty_frontier():
self.path = self.frontier.pop()
self.num_expanded += 1
if self.problem.is_goal(self.path.end()): # solution found
self.solution = self.path # store the solution found

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

46

47
48

49
50
51

52
53

54
55
56

57
58
59

61
62
63
64
65
66
67
68

3.2. Generic Searcher and Variants 55

self.display(1, f"Solution: {self.path} (cost:
{self.path.cost})\n",
self.num_expanded, "paths have been expanded and”,
len(self.frontier), "paths remain in the
frontier"”)
return self.path
else:
self.display(4, f"Expanding: {self.path} (cost:
{self.path.cost})")
neighs = self.problem.neighbors(self.path.end())
self.display(2,f"Expanding: {self.path} with neighbors
{neighs}")
for arc in reversed(list(neighs)):
self.add_to_frontier(Path(self.path,arc))
self.display(3, f"New frontier: {[p.end() for p in
self.frontier]}")

self.display(@,"”"No (more) solutions. Total of”,
self.num_expanded, "paths expanded.")

Note that this reverses the neighbors so that it implements depth-first search in
an intuitive manner (expanding the first neighbor first). The call to list is for the
case when the neighbors are generated (and not already in a list). Reversing the
neighbors might not be required for other methods. The calls to reversed and
list can be removed, and the algorithm still implements depth-first search.

To use depth-first search to find multiple paths for problem1 and simp_delivery_graph,

copy and paste the following into Python’s read-evaluate-print loop; keep find-
ing next solutions until there are no more:

searchGeneric.py — (continued)

Depth-first search for problemi:

searcher1 = Searcher(searchExample.probleml)

searcheri1.search() # find first solution

searcheri.search() # find next solution (repeat until no solutions)

H O B H

Depth-first search for simple delivery graph:
searcher_sdg = Searcher(searchExample.simp_delivery_graph)
searcher_sdg.search() # find first or next solution

Exercise 3.1 Implement breadth-first search. Only add_to_frontier and / or pop need
to be modified to implement a first-in first-out queue.

3.2.2 GUI for Tracing Search

[This GUI implements most of the functionality of the solve model of the now-
discontinued AlSpace.org search app.]

Figure shows the GUI that can be used to step through search algo-
rithms. Here the path A — B is being expanded, and the neighbors are E and
F. The other nodes at the end of paths of the frontier are C and D. Thus the

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

56 3. Searching for Solutions

Expanding: A --> B

7
3 —
f 4
2 2
red: selected
< 3 4 > blue: neighbors
green: frontier

yellow: goal

| step | | fine step | | auto search | | quit |

Figure 3.6: SearcherGUI(Searcher, simp_delivery_graph)

frontier contains paths to C and D, used to also contain A — B, and now will
containA -+ B — Eand A — B — F.

SearcherGUI takes a search class and a problem, and lets one explore the
search space after calling go(). A GUI can only be used for one search; at the
end of the search the loop ends and the buttons no longer work.

This is implemented by redefining display. The search algorithms don’t
need to be modified. If you modify them (or create your own), you just have to
be careful to use the appropriate number for the display. The first argument to
display has the following meanings:

1. a solution has been found

2. what is shown for a “step” on a GUI; here it is assumed to be the path,
the neighbors of the end of the path, and the other nodes at the end of
paths on the frontier

3. (shown with “fine step” but not with “step”) the frontier and the path
selected

4. (shown with “fine step” but not with “step”) the frontier.

It is also useful to look at the Python console, as the display information is
printed there.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54
55
56
57
58

3.2. Generic Searcher and Variants

searchGUIl.py — GUI for search

57

import matplotlib.pyplot as plt
from matplotlib.widgets import Button
import time

class SearcherGUI(object):
def __init__(self, SearchClass, problem,
fontsize=10,
colors = {'selected':'red', 'neighbors
"frontier':'green', 'goal':'yellow
show_costs = True):
self.problem = problem
self.searcher = SearchClass(problem)
self.problem.fontsize = fontsize
self.colors = colors
self.problem.show_costs = show_costs
self.quitting = False

fig, self.ax = plt.subplots()

plt.ion() # interactive

self.ax.set_axis_off ()
plt.subplots_adjust(bottom=0.15)

step_butt = Button(plt.axes([0.1,0.02,0.2,0.05]),
step_butt.on_clicked(self.step)

fine_butt = Button(plt.axes([0.4,0.02,0.2,0.05]),
fine_butt.on_clicked(self.finestep)

auto_butt = Button(plt.axes([0.7,0.02,0.2,0.05]),
auto_butt.on_clicked(self.auto)

":'blue’',
I}!

"step”)
"fine step”)

"auto search")

fig.canvas.mpl_connect('close_event', self.window_closed)
self.ax.text(0.85,0, '\n'.join(self.colors[al+": "+a

for a in self.colors))
self.problem.show_graph(self.ax, node_color='white')
self.problem.show_node(self.ax, self.problem.start,

self.colors['frontier'])
for node in self.problem.nodes:
if self.problem.is_goal(node):

self.problem.show_node(self.ax, node,self.colors['goal'])

plt.show()
self.click = 7 # bigger than any display!
self.searcher.display = self.display
try:

while self.searcher.frontier:

path = self.searcher.search()

except ExitToPython:

print("GUI closed”)
else:

print(”"No more solutions”)

def display(self, level, xargs, **nargs):
if self.quitting:

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

58 3. Searching for Solutions

raise ExitToPython()
if level <= self.click: #step
print(xargs, **nargs)
self.ax.set_title(f"Expanding: {self.searcher.path}"”,
fontsize=self.problem.fontsize)

if level == 1:
self.show_frontier(self.colors['frontier'])
self.show_path(self.colors['selected'])
self.ax.set_title(f"Solution Found: {self.searcher.path}”,

fontsize=self.problem.fontsize)

elif level == 2: # what should be shown if node in multiple?
self.show_frontier(self.colors['frontier'])
self.show_path(self.colors['selected'])
self.show_neighbors(self.colors['neighbors'])

elif level == 3:
self.show_frontier(self.colors['frontier'])
self.show_path(self.colors['selected'])

elif level == 4:
self.show_frontier(self.colors['frontier'])

wait for a button click

self.click = @

plt.draw()

while self.click == @ and not self.quitting:
plt.pause(@.1)

if self.quitting:
raise ExitToPython()

undo coloring:

self.ax.set_title("")

self.show_frontier('white')

self.show_neighbors('white')

path_show = self.searcher.path

while path_show.arc:
self.problem.show_arc(self.ax, path_show.arc, 'black')
self.problem.show_node(self.ax, path_show.end(), 'white')
path_show = path_show.initial

self.problem.show_node(self.ax, path_show.end(), 'white')

if self.problem.is_goal(self.searcher.path.end()):
self.problem.show_node(self.ax, self.searcher.path.end(),

self.colors['goal'])
plt.draw()

def show_frontier(self, color):
for path in self.searcher.frontier:
self.problem.show_node(self.ax, path.end(), color)

def show_path(self, color):

"""color selected path"""
path_show = self.searcher.path

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150

3.2. Generic Searcher and Variants 59

while path_show.arc:
self.problem.show_arc(self.ax, path_show.arc, color)
self.problem.show_node(self.ax, path_show.end(), color)
path_show = path_show.initial
self.problem.show_node(self.ax, path_show.end(), color)

def show_neighbors(self, color):
for neigh in self.problem.neighbors(self.searcher.path.end()):
self.problem.show_node(self.ax, neigh.to_node, color)

def auto(self, event):
self.click =1

def step(self,event):
self.click = 2

def finestep(self, event):
self.click = 3

def window_closed(self, event):
self.quitting = True

class ExitToPython(Exception):
pass

searchGUI.py — (continued)

from searchGeneric import Searcher, AStarSearcher
from searchMPP import SearcherMPP

import searchExample

from searchBranchAndBound import DF_branch_and_bound

to demonstrate depth-first search:
sdfs = SearcherGUI(Searcher, searchExample.tree_graph)

delivery graph examples:

sh = SearcherGUI(Searcher, searchExample.simp_delivery_graph)

sha = SearcherGUI(AStarSearcher, searchExample.simp_delivery_graph)

shac = SearcherGUI(AStarSearcher,
searchExample.cyclic_simp_delivery_graph)

shm = SearcherGUI(SearcherMPP, searchExample.cyclic_simp_delivery_graph)

shb = SearcherGUI(DF_branch_and_bound, searchExample.simp_delivery_graph)

+* H ¥ H H

E=3

The following is AI:FCA figure 3.15, and is useful to show branch&bound:
shbt = SearcherGUI(DF_branch_and_bound, searchExample.tree_graph)

if __name__ == "__main__":

print("Try e.g.: SearcherGUI(Searcher,
searchExample.simp_delivery_graph)")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

60 3. Searching for Solutions

3.2.3 Frontier as a Priority Queue

In many of the search algorithms, such as A* and other best-first searchers,
the frontier is implemented as a priority queue. The following code uses the
Python’s built-in priority queue implementations, heapq.

Following the lead of the Python documentation, https://docs.python.
org/3/library/heapq.html, a frontier is a list of triples. The first element of
each triple is the value to be minimized. The second element is a unique index
which specifies the order that the elements were added to the queue, and the
third element is the path that is on the queue. The use of the unique index en-
sures that the priority queue implementation does not compare paths; whether
one path is less than another is not defined. It also lets us control what sort of
search (e.g., depth-first or breadth-first) occurs when the value to be minimized
does not give a unique next path.

The variable frontier_index is the total number of elements of the frontier
that have been created. As well as being used as the unique index, it is useful
for statistics, particularly in conjunction with the current size of the frontier.

searchGeneric.py — (continued)

import heapq # part of the Python standard library
from searchProblem import Path

class FrontierPQ(object):
"""A frontier consists of a priority queue (heap), frontierpq, of
(value, index, path) triples, where
* value is the value we want to minimize (e.g., path cost + h).
* index is a unique index for each element
* path is the path on the queue
Note that the priority queue always returns the smallest element.

nnn

def __init__(self):
constructs the frontier, initially an empty priority queue

nnn

nnn

self.frontier_index = @ # the number of items added to the frontier
self.frontierpq = [] # the frontier priority queue

def empty(self):

is True if the priority queue is empty
return self.frontierpq == []

nnn

def add(self, path, value):
"""add a path to the priority queue
value is the value to be minimized"""
self.frontier_index += 1 # get a new unique index
heapq.heappush(self.frontierpq, (value, -self.frontier_index, path))

def pop(self):
"""returns and removes the path of the frontier with minimum value.

https://aipython.org Version 0.9.15 December 23, 2024

https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/heapq.html
https://aipython.org

100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

3.2. Generic Searcher and Variants 61

nnn

(_,_,path) = heapq.heappop(self.frontierpq)
return path

The following methods are used for finding and printing information about
the frontier.

searchGeneric.py — (continued)

def count(self,val):
"""returns the number of elements of the frontier with value=val"""
return sum(1 for e in self.frontierpq if e[@]==val)

def __repr__(self):
"""string representation of the frontier
return str([(n,c,str(p)) for (n,c,p) in self.frontierpql)

nnn

def __len__(self):
"""length of the frontier"""
return len(self.frontierpq)

def __iter__(self):
iterate through the paths in the frontier
for (_,_,path) in self.frontierpq:
yield path

nnn nnn

3.2.4 A* Search

For an A* Search the frontier is implemented using the FrontierPQ class.

searchGeneric.py — (continued)

class AStarSearcher(Searcher):
"""returns a searcher for a problem.
Paths can be found by repeatedly calling search().

nnn

def __init__(self, problem):
super().__init__(problem)

def initialize_frontier(self):
self.frontier = FrontierPQ()

def empty_frontier(self):
return self.frontier.empty()

def add_to_frontier(self,path):
"""add path to the frontier with the appropriate cost
value = path.cost+self.problem.heuristic(path.end())
self.frontier.add(path, value)

nnn

Code should always be tested. The following provides a simple unit test,
using problem1 as the default problem.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

140
141
142

143
144
145
146
147
148
149
150
151
152
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175

62 3. Searching for Solutions

searchGeneric.py — (continued)

import searchExample

def test(SearchClass, problem=searchExample.probleml,
solutions=[['G','D"','B','C',"'A']1]):

"""Unit test for aipython searching algorithms.
SearchClass is a class that takes a problem and implements search()
problem is a search problem
solutions is a list of optimal solutions
print("Testing problem 1:")
schr1 = SearchClass(problem)
path1l = schril.search()
print("Path found:",6pathl)
assert pathl is not None, "No path is found in probleml1”
assert list(pathl.nodes()) in solutions, "Shortest path not found in
problem1”
print("Passed unit test")
if __name__ == "__main__":
#test(Searcher) # what needs to be changed to make this succeed?
test (AStarSearcher)
example queries:
searcher1 = Searcher(searchExample.simp_delivery_graph) # DFS
searcherl.search() # find first path
searcherl.search() # find next path
searcher2 = AStarSearcher(searchExample.simp_delivery_graph) # Ax
searcher2.search() # find first path
searcher2.search() # find next path
searcher3 = Searcher(searchExample.cyclic_simp_delivery_graph) # DFS
searcher3.search() # find first path with DFS. What do you expect to
happen?
searcher4 = AStarSearcher(searchExample.cyclic_simp_delivery_graph) # A%
searcher4.search() # find first path
To use the GUI for Ax search do the following
python -i searchGUI.py
SearcherGUI (AStarSearcher, searchExample.simp_delivery_graph)
SearcherGUI(AStarSearcher, searchExample.cyclic_simp_delivery_graph)

Exercise 3.2 Change the code so that it implements (i) best-first search and (ii)
lowest-cost-first search. For each of these methods compare it to A* in terms of the
number of paths expanded, and the path found.

Exercise 3.3 The searcher acts like a Python iterator, in that it returns one value
(here a path) and then returns other values (paths) on demand, but does not imple-
ment the iterator interface. Change the code so it implements the iterator interface.
What does this enable us to do?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36

37
38
39

40
41

42

43

44

45

3.2. Generic Searcher and Variants 63

3.2.5 Multiple Path Pruning

To run the multiple-path pruning demo, in folder “aipython”, load
“searchMPP.py” , using e.g., ipython -i searchMPP.py, and copy and
paste the example queries at the bottom of that file.

The following implements A* with multiple-path pruning. It overrides search()
in Searcher.

searchMPP.py — Searcher with multiple-path pruning

from searchGeneric import AStarSearcher
from searchProblem import Path

class SearcherMPP(AStarSearcher):
"""returns a searcher for a problem.
Paths can be found by repeatedly calling search().
def __init__(self, problem):
super().__init__(problem)
self.explored = set()

def search(self):
"""returns next path from an element of problem's start nodes
to a goal node.
Returns None if no path exists.
while not self.empty_frontier():
self.path = self.frontier.pop()
if self.path.end() not in self.explored:
self.explored.add(self.path.end())
self.num_expanded += 1
if self.problem.is_goal(self.path.end()):
self.solution = self.path # store the solution found
self.display(1, f"Solution: {self.path} (cost:
{self.path.cost})\n",
self.num_expanded, "paths have been expanded and”,
len(self.frontier), "paths remain in the
frontier")
return self.path
else:
self.display(4,f"Expanding: {self.path} (cost:
{self.path.cost})")
neighs = self.problem.neighbors(self.path.end())
self.display(2,f"Expanding: {self.path} with neighbors
{neighs}")
for arc in neighs:
self.add_to_frontier(Path(self.path,arc))
self.display(3, f"New frontier: {[p.end() for p in
self.frontier]}")
self.display(@,"”"No (more) solutions. Total of",

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

46
47
48
49
50
51
52
53
54
55
56
57
58
59

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

64 3. Searching for Solutions

self.num_expanded, "paths expanded.")

from searchGeneric import test
if __name__ == "__main__":
test(SearcherMPP)

import searchExample
searcherMPPcdp = SearcherMPP(searchExample.cyclic_simp_delivery_graph)
searcherMPPcdp.search() # find first path

To use the GUI for SearcherMPP do

python -i searchGUI.py

import searchMPP

SearcherGUI (searchMPP.SearcherMPP,
searchExample.cyclic_simp_delivery_graph)

Exercise 3.4 Chris was very puzzled as to why there was a minus (“—") in the
second element of the tuple added to the heap in the add method in FrontierPQ in
searchGeneric.py.

Sam suggested the following example would demonstrate the importance of
the minus. Consider an infinite integer grid, where the states are pairs of integers,
the start is (0,0), and the goal is (10,10). The neighbors of (i,j) are (i+1,j) and (i,j +
1). Consider the heuristic function k((i,j)) = |10 —i| 4 |10 — j|. Sam suggested you
compare how many paths are expanded with the minus and without the minus.
searchGrid is a representation of Sam’s graph. If something takes too long, you
might consider changing the size.

searchGrid.py — A grid problem to demonstrate A*

from searchProblem import Search_problem, Arc

class GridProblem(Search_problem):

"""3 node is a pair (x,y)

def __init__(self, size=10):
self.size = size

nnn

def start_node(self):
"""returns the start node
return (0,0)

nnn

def is_goal(self,node):
"""returns True when node is a goal node
return node == (self.size,self.size)

nnn

def neighbors(self,node):
"""returns a list of the neighbors of node
(x,y) = node
return [Arc(node, (x+1,y)), Arc(node, (x,y+1))]

nnn

def heuristic(self,node):
(x,¥) = node

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

3.3. Branch-and-bound Search 65

return abs(x-self.size)+abs(y-self.size)

class GridProblemNH(GridProblem):
"""Grid problem with a heuristic of @"""
def heuristic(self,node):
return @

from searchGeneric import Searcher, AStarSearcher
from searchMPP import SearcherMPP
from searchBranchAndBound import DF_branch_and_bound

def testGrid(size = 10):
print("\nWith MPP")
gridsearchermpp = SearcherMPP(GridProblem(size))
print(gridsearchermpp.search())
print("\nWithout MPP")
gridsearchera = AStarSearcher(GridProblem(size))
print(gridsearchera.search())
print("\nWith MPP and a heuristic = @ (Dijkstra's algorithm)")
gridsearchermppnh = SearcherMPP(GridProblemNH(size))
print(gridsearchermppnh.search())

Explain to Chris what the minus does and why it is there. Give evidence for your
claims. It might be useful to refer to other search strategies in your explanation.
As part of your explanation, explain what is special about Sam’s example.

Exercise 3.5 Implement a searcher that implements cycle pruning instead of
multiple-path pruning. You need to decide whether to check for cycles when paths
are added to the frontier or when they are removed. (Hint: either method can be
implemented by only changing one or two lines in SearcherMPP. Hint: there is
a cycle if path.end() in path.initial_nodes()) Compare no pruning, multiple
path pruning and cycle pruning for the cyclic delivery problem. Which works
better in terms of number of paths expanded, computational time or space?

3.3 Branch-and-bound Search

To run the demo, in folder “aipython”, load
“searchBranchAndBound.py”, and copy and paste the example queries
at the bottom of that file.

Depth-first search methods do not need a priority queue, but can use a list
as a stack. In this implementation of branch-and-bound search, we call search
to find an optimal solution with cost less than bound. This uses depth-first
search to find a path to a goal that extends path with cost less than the bound.
Once a path to a goal has been found, that path is remembered as the best_path,
the bound is reduced, and the search continues.

searchBranchAndBound.py — Branch and Bound Search

11 | from searchProblem import Path

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12
13
14
15
16
17

18
19
20

21

22
23
24
25
26
27
28
29

30
31
32
33
34
35

36

37
38
39
40
41
42

43
44
45
46
47
48

49

50

51

52

66 3. Searching for Solutions

from searchGeneric import Searcher
from display import Displayable

class DF_branch_and_bound(Searcher):
"""returns a branch and bound searcher for a problem.
An optimal path with cost less than bound can be found by calling
search()
def __init__(self, problem, bound=float("inf")):
"""creates a searcher than can be used with search() to find an
optimal path.
bound gives the initial bound. By default this is infinite -
meaning there
is no initial pruning due to depth bound
super().__init__(problem)
self.best_path = None
self.bound = bound

def search(self):
"""returns an optimal solution to a problem with cost less than
bound.
returns None if there is no solution with cost less than bound."""
self.frontier = [Path(self.problem.start_node())]
self.num_expanded = 0
while self.frontier:
self.path = self.frontier.pop()
if self.path.cost+self.problem.heuristic(self.path.end()) <
self.bound:
if self.path.end() not in self.path.initial_nodes(): # for
cycle pruning
self.display(2,"Expanding:",self.path,"cost:",self.path.cost)
self.num_expanded += 1
if self.problem.is_goal(self.path.end()):
self.best_path = self.path
self.bound = self.path.cost
self.display(1,"New best path:",self.path,”
cost:"”,self.path.cost)
else:
neighs = self.problem.neighbors(self.path.end())
self.display(4, "Neighbors are”, neighs)
for arc in reversed(list(neighs)):
self.add_to_frontier(Path(self.path, arc))
self.display(3, f"New frontier: {[p.end() for p in
self.frontier]}")
self.path = self.best_path
self.solution = self.best_path
self.display(1,f"Optimal solution is {self.best_path}." if
self.best_path
else "No solution found.",

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

53
54

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70

71

3.3. Branch-and-bound Search 67

f”"Number of paths expanded: {self.num_expanded}.")
return self.best_path

Note that this code used reversed in order to expand the neighbors of a node
in the left-to-right order one might expect. It does this because pop() removes
the rightmost element of the list. The call to [ist is there because reversed only
works on lists and tuples, but the neighbors can be generated.

Here is a unit test and some queries:

searchBranchAndBound.py — (continued)

from searchGeneric import test
if __name__ == "__main__":
test (DF_branch_and_bound)

Example queries:

import searchExample

searcherbl = DF_branch_and_bound(searchExample.simp_delivery_graph)

searcherbl.search() # find optimal path

searcherb2 =
DF_branch_and_bound(searchExample.cyclic_simp_delivery_graph,
bound=100)

searcherb2.search() # find optimal path

to use the GUI do:

ipython -i searchGUI.py

import searchBranchAndBound

SearcherGUI (searchBranchAndBound.DF_branch_and_bound,
searchExample.simp_delivery_graph)

SearcherGUI (searchBranchAndBound.DF_branch_and_bound,

searchExample.cyclic_simp_delivery_graph)

H oH H

Exercise 3.6 In searcherb2, in the code above, what happens if the bound is
smaller, say 10? What if it is larger, say 1000?

Exercise 3.7 Implement a branch-and-bound search using recursion. Hint: you
don’t need an explicit frontier, but can do a recursive call for the children.

Exercise 3.8 Add loop detection to branch-and-bound search.

Exercise 3.9 After the branch-and-bound search found a solution, Sam ran search
again, and noticed a different count. Sam hypothesized that this count was related
to the number of nodes that an A search would use (either expand or be added to
the frontier). Or maybe, Sam thought, the count for a number of nodes when the
bound is slightly above the optimal path case is related to how A* would work. Is
there a relationship between these counts? Are there different things that it could
count so they are related? Try to find the most specific statement that is true, and
explain why it is true.

To test the hypothesis, Sam wrote the following code, but isn’t sure it is helpful:

searchTest.py — code that may be useful to compare A* and branch-and-bound

11 ‘from searchGeneric import Searcher, AStarSearcher

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

68 3. Searching for Solutions

from searchBranchAndBound import DF_branch_and_bound
from searchMPP import SearcherMPP

DF_branch_and_bound.max_display_level = 1
Searcher.max_display_level = 1

def run(problem,name):
print ("\n\n*xx*xx*" name)

print("\nAx:")
asearcher = AStarSearcher(problem)
print("Path found:",6asearcher.search(),” cost=",asearcher.solution.cost)
print("there are",asearcher.frontier.count(asearcher.solution.cost),
"elements remaining on the queue with
f-value=",asearcher.solution.cost)

print("\nAx with MPP:"),
msearcher = SearcherMPP(problem)
print("Path found:",msearcher.search(),” cost=",msearcher.solution.cost)
print("there are”,msearcher.frontier.count(msearcher.solution.cost),
"elements remaining on the queue with
f-value=",msearcher.solution.cost)

bound = asearcher.solution.cost*1.00001

print(”"\nBranch and bound (with too-good initial bound of"”, bound,")")
tbb = DF_branch_and_bound(problem,bound) # cheating!!!!

print("Path found:",tbb.search(),” cost=",tbb.solution.cost)
print(”"Rerunning B&B")

print("Path found:"”,tbb.search())

bbound = asearcher.solution.cost*10+10@

print(”"\nBranch and bound (with not-very-good initial bound of"”,
bbound, ")")

tbb2 = DF_branch_and_bound(problem,bbound)

print("Path found:",tbb2.search(),” cost=",tbb2.solution.cost)

print(”"Rerunning B&B")

print("Path found:",tbb2.search())

print("\nDepth-first search: (Use "C if it goes on forever)")
tsearcher = Searcher(problem)
print("Path found:", tsearcher.search(),” cost=",tsearcher.solution.cost)

import searchExample
from searchTest import run
if __name__ == "__main__":
run(searchExample.probleml, "Problem 1")
run(searchExample.simp_delivery_graph, "Acyclic Delivery")
run(searchExample.cyclic_simp_delivery_graph,"Cyclic Delivery")
also test graphs with cycles, and graphs with multiple least-cost paths

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31

Chapter 4

Reasoning with Constraints

4.1 Constraint Satisfaction Problems

4.1.1 Variables

A variable consists of a name, a domain and an optional (x,y) position (for
displaying). The domain of a variable is a list or a tuple, as the ordering matters
for some algorithms.

variable.py — Representations of a variable in CSPs and probabilistic models

import random

class Variable(object):
"""A random variable.
name (string) - name of the variable
domain (list) - a list of the values for the variable.
an (x,y) position for displaying

nnn

def __init__(self, name, domain, position=None):
"""Variable
name a string
domain a list of printable values
position of form (x,y) where 0 <= x <=1, 0 <=y <=1
self.name = name # string
self.domain = domain # list of values
self.position = position if position else (random.random(),
random. random())
self.size = len(domain)

def __str__(self):

69

32
33
34
35

11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30

70 4. Reasoning with Constraints

return self.name

def __repr__(self):
return self.name # f"Variable({self.name})"

4.1.2 Constraints
A constraint consists of:
* A tuple (or list) of variables called the scope.

* A condition, a Boolean function that takes the same number of argu-
ments as there are variables in the scope.

¢ An name (for displaying)

e An optional (x,y) position. The mean of the positions of the variables in
the scope is used, if not specified.

cspProblem.py — Representations of a Constraint Satisfaction Problem

from variable import Variable

for showing csps:
import matplotlib.pyplot as plt
import matplotlib.lines as lines

class Constraint(object):
"""A Constraint consists of
* scope: a tuple or list of variables
* condition: a Boolean function that can applied to a tuple of values
for variables in scope
* string: a string for printing the constraint

nnn

def __init__(self, scope, condition, string=None, position=None):
self.scope = scope
self.condition = condition
self.string = string
self.position = position

def __repr__(self):
return self.string

An assignment is a variable:value dictionary.
If con is a constraint:

® con.can_evaluate(assignment) is True when the constraint can be eval-
uated in the assignment. Generally this is true when all variables in the
scope of the constraint are assigned in the assignment. [There are cases
where it could be true when not all variables are assigned, such as if the
constraint was “if x then y else z”, but that it not implemented here.]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

32
33
34
35
36
37
38
39
40
41
42

43
44

46
47
48
49
50
51

4.1. Constraint Satisfaction Problems 71

® con.holds(assignment) returns True or False depending on whether the
condition is true or false for that assignment. The assignment assignment
must assign a value to every variable in the scope of the constraint con
(and could also assign values to other variables); con.holds gives an error
if not all variables in the scope of con are assigned in the assignment. It
ignores variables in assignment that are not in the scope of the constraint.

In Python, the * notation is used for unpacking a tuple. For example,
F(%(1,2,3)) is the same as F(1,2,3). So if t has value (1,2,3), then F(xt) is
the same as F(1,2,3).

cspProblem.py — (continued)

def can_evaluate(self, assignment):

nnn

assignment is a variable:value dictionary
returns True if the constraint can be evaluated given assignment

nnn

return all(v in assignment for v in self.scope)

def holds(self,assignment):
"""returns the value of Constraint con evaluated in assignment.

precondition: all variables are assigned in assignment, ie
self.can_evaluate(assignment) is true

nnn

return self.condition(*tuple(assignment[v] for v in self.scope))

413 CSPs

A constraint satisfaction problem (CSP) requires:
* title: a string title
® variables: alist or set of variables
® constraints: a set or list of constraints.
Other properties are inferred from these:

® var_to_const is a mapping from variables to set of constraints, such that
var_to_const[var] is the set of constraints with var in their scope.

cspProblem.py — (continued)

class CSP(object):
"""A CSP consists of
a title (a string)
variables, a list or set of variables
constraints, a list of constraints
var_to_const, a variable to set of constraints dictionary

¥ % X X%

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

74
75
76
77
78
79
80
81

83
84
85
86
87
88
89

72

4. Reasoning with Constraints

nnn

def __init__(self, title, variables, constraints):
"""title is a string
variables is set of variables
constraints is a list of constraints
self.title = title
self.variables = variables
self.constraints = constraints
self.var_to_const = {var:set() for var in self.variables}
for con in constraints:
for var in con.scope:
self.var_to_const[var].add(con)

def __str__(self):
"""string representation of CSP"""
return self.title

def __repr__(self):
"""more detailed string representation of CSP"""
return f"CSP({self.title}, {self.variables}, {([str(c) for c in
self.constraints])})”

csp.consistent(assignment) returns true if the assignment is consistent with
each of the constraints in csp (i.e., all of the constraints that can be evaluated
evaluate to true). Unless the assignment assigns to all variables, consistent
does not imply the CSP is consistent or has a solution, because constraints in-
volving variables not in the assignment are ignored.

cspProblem.py — (continued)

def consistent(self,assignment):
"""assignment is a variable:value dictionary
returns True if all of the constraints that can be evaluated
evaluate to True given assignment.
return all(con.holds(assignment)
for con in self.constraints
if con.can_evaluate(assignment))

The show method uses matplotlib to show the graphical structure of a con-

straint network. This also includes code used for the consistency GUI (Section
4.4.2)).

cspProblem.py — (continued)

def show(self, linewidth=3, showDomains=False, showAutoAC = False):
self.linewidth = linewidth
self.picked = None
plt.ion() # interactive
self.arcs = {} # arc: (con,var) dictionary
self.thelines = {} # (con,var):arc dictionary
self.nodes = {} # node: variable dictionary

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

127

128
129
130
131
132
133
134
135

4.1. Constraint Satisfaction Problems

self.fig, self.ax= plt.subplots(1, 1)

self.ax.set_axis_off ()

for var in self.variables:
if var.position is None:
var.position = (random.random(), random.random())

self.showAutoAC = showAutoAC # used for consistency GUI

self.autoAC = False

73

domains = {var:var.domain for var in self.variables} if showDomains

else {}

self.draw_graph(domains=

domains)

def draw_graph(self, domains={}, to_do = {3}, title=None, fontsize=10):

self.ax.clear()
self.ax.set_axis_off ()
if title:

plt.title(title, fontsize=fontsize)

else:
plt.title(self.title

, fontsize=fontsize)

var_bbox = dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
facecolor="yellow")
con_bbox = dict(boxstyle="square,pad=1.0",facecolor="lightyellow")
self.autoACtext = plt.text(0,0,"Auto AC" if self.showAutoAC else "",
bbox={"'boxstyle': 'square,pad=1.0",
'facecolor': 'pink'},
picker=True, fontsize=fontsize)

for con in self.constraints:
if con.position is None:
con.position = tuple(sum(var.position[i] for var in
con.scope)/len(con.scope)

CX,Cy = con.position
bbox = con_bbox
for var in con.scope

for i in range(2))

VX,Vy = var.position
if (var,con) in to_do:

color = 'blue'
else:
color = 'green'

line = lines.Line2D([cx,vx], [cy,vyl, axes=self.ax,

color=color,

self.arcs[linel=

picker=True, pickradius=10,
linewidth=self.linewidth)

(var,con)

self.thelines[(var,con)] = line
self.ax.add_line(line)
plt.text(cx,cy,con.string,

X,y = var.position

https://aipython.org

bbox=con_bbox,

ha='center',va='center', fontsize=fontsize)
for var in self.variables:

Version 0.9.15

December 23, 2024

https://aipython.org

136
137
138
139
140

141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

11
12
13
14
15
16
17
18
19

74 4. Reasoning with Constraints

if domains:
node_label = f"{var.name}\n{domains[var]}"
else:
node_label = var.name
node = plt.text(x, y, node_label, bbox=var_bbox, ha='center',
va='center',
picker=True, fontsize=fontsize)
self.nodes[node] = var
self.fig.canvas.mpl_connect('pick_event', self.pick_handler)

The following method is used for the GUI (Section 4.4.2).

cspProblem.py — (continued)

def pick_handler(self,event):
mouseevent = event.mouseevent
self.last_artist = artist = event.artist
#print('xx*picker handler:',artist, 'mouseevent:', mouseevent)
if artist in self.arcs:
#print ('### selected arc',self.arcs[artist])
self.picked = self.arcs[artist]
elif artist in self.nodes:
#print ('### selected node',self.nodes[artist])
self.picked = self.nodes[artist]
elif artist==self.autoACtext:
self.autoAC = True
#print("**x autoAC")
else:
print("### unknown click")

4.1.4 Examples

In the following code ne_, when given a number, returns a function that is
true when its argument is not that number. For example, if f=ne_(3), then
f(2) is True and f(3) is False. That is, ne_(x)(y) is true when x # y. Allowing
a function of multiple arguments to use its arguments one at a time is called
currying, after the logician Haskell Curry. Some alternative implementations
are commented out; the uncommented one allows the partial functions to have
names.

cspExamples.py — Example CSPs

from cspProblem import Variable, CSP, Constraint
from operator import 1lt,ne,eq,gt

def ne_(val):
"""not equal value

nnn

return lambda x: x != val # alternative definition
return partial(ne,val) # another alternative definition
def nev(x):

return val != x

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

20

23
24
25
26
27
28
29
30

32
33
34
35
36
37

39
40
41
42
43
44
45
46
47
48
49

4.1. Constraint Satisfaction Problems 75

nev.__name__ = f"{val} != " # name of the function
return nev

Similarly is_(x)(y) is true when x = y.

cspExamples.py — (continued)

def is_(val):
"""is a value
return lambda x: x == val # alternative definition
return partial(eq,val) # another alternative definition
def isv(x):
return val == x
isv.__name__ = f"{val} == "
return isv

nnn

csp@ has variables X, Y and Z, each with domain {1,2,3}. The constraints are
X<YandY < Z.

cspExamples.py — (continued)

X = Variable('X', {1,2,3}, position=(0.1,0.8))
Y = Variable('Y', {1,2,3}, position=(0.5,0.2))
Z = Variable('Z', {1,2,3}, position=(0.9,0.8))

csp@ = CSP("csp@”, {X,Y,Z},
[Constraint([X,Y], 1t, "X<Y"),
Constraint([Y,Z]1, 1t, "Y<Z")1)

cspl has variables A, B and C, each with domain {1,2,3,4}. The constraints
are A < B, B # 2, and B < C. This is slightly more interesting than csp®
as it has more solutions. This example is used in the unit tests, and so if it is
changed, the unit tests need to be changed. csp1s is the same, but with only
the constraints A < Band B < C

cspExamples.py — (continued)

A = Variable('A', {1,2,3,4}, position=(0.2,0.9))

B = Variable('B', {1,2,3,4}, position=(0.8,0.9))

C = Variable('C', {1,2,3,4}, position=(1,0.3))

Co = Constraint([A,B], 1t, "A < B"”, position=(0.4,0.3))
C1 = Constraint([B], ne_(2), "B != 2", position=(1,0.7))

C2 = Constraint([B,C], 1t, "B < C", position=(0.6,0.1))
cspl = CSP("csp1”, {A, B, C3,
[Co, C1, C2])

cspls = CSP("cspl1s”, {A, B, C3},
[Co, C21) # A<B, B<C

The next CSP, csp2 is Example 4.9 of Poole and Mackworth| [2023]; the do-
main consistent network (after applying the unary constraints) is shown in Fig-

ure Note that we use the same variables as the previous example and add
two more.

cspExamples.py — (continued)

‘D = Variable('D', {1,2,3,4}, position=(0,0.3))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

76

4. Reasoning with Constraints

cspl

A<B

B<C

Figure 4.1: cspl.show()

B!=2

E<A E<B

\Nipsra Vi

E<D

E<C

Figure 4.2: csp2.show()

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

52
53
54
55
56
57
58
59
60
61
62
63
64

66
67
68
69
70
71
72
73

4.1. Constraint Satisfaction Problems 77

csp3
A A'=B B
A<D
A-E is odd B<E
D \ D<C / /@
DI=E Cl=E
E

Figure 4.3: csp3.show()

E = Variable('E', {1,2,3,4}, position=(0.5,0))

csp2 = CSP("csp2"”, {A,B,C,D,E},
[Constraint([B1, ne_(3),

"B l= 3", position=(1,0.9)),

Constraint([C], ne_(2), "C != 2", position=(0.95,0.1)),

Constraint([A,B], ne, "A
Constraint([B,C], ne, "A
Constraint([C,D], 1t, "C
Constraint([A,D], eq, "A
Constraint([E,A], 1t, "E
Constraint([E,B], 1t, "E
Constraint([E,C], 1t, "E
Constraint([E,D], 1t, "E
Constraint([B,D], ne, "B

1= B"),

The following example is another scheduling problem (but with multiple an-
swers). This is the same as “scheduling 2” in the original Alspace.org consis-

tency app.

cspExamples.py — (continued)

csp3 = CSP("csp3”, {A,B,C,D,E},
[Constraint([A,B], ne, "A
Constraint([A,D], 1t, "A
Constraint([A,E], lambda
Constraint([B,E], 1t, "B
Constraint([D,C], 1t, "D
Constraint([C,E], ne, "C
Constraint([D,E], ne, "D

= B"),
< D",

a,e: (a-e)%2 == 1, "A-E is odd"),
<E"),

<Cc",

1= E),

I=E"D

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

75
76
77
78
79
80
81
82
83
84

86
87
88

78 4. Reasoning with Constraints

csp4

A adjacent(A,B)

B!=D Al=C

adjacent(B,C)

D adjacent(C,D)

Figure 4.4: csp4.show()

The following example is another abstract scheduling problem. What are

the solutions?

cspExamples.py — (continued)

def adjacent(x,y):
"""True when x and y are adjacent numbers
return abs(x-y) == 1

nnn

csp4 = CSP("csp4”, {A,B,C,D},

[Constraint([A,B], adjacent, "adjacent(A,B)"),
Constraint([B,C], adjacent, "adjacent(B,C)"),
Constraint([C,D], adjacent, "adjacent(C,D)"),

Constraint([A,C], ne, "A 1= C"),
Constraint([B,D], ne, "B !=D") 1)

The following examples represent the crossword shown in Figure

In the first representation, the variables represent words. The constraint
imposed by the crossword is that where two words intersect, the letter at the
intersection must be the same. The method meet_at is used to test whether two
words intersect with the same letter. For example, the constraint meet_at(2,0)
means that the third letter (at position 2) of the first argument is the same as
the first letter of the second argument. This is shown in Figure

cspExamples.py — (continued)

def meet_at(pl,p2):
"""returns a function of two words that is true

when the words intersect at positions pl, p2.

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

4.1. Constraint Satisfaction Problems 79

. Words:

ant, big, bus, car, has,
book, buys, hold, lane,
year, ginger, search,
symbol, syntax.

Figure 4.5: crosswordl: a crossword puzzle to be solved

crosswordl
one_across 1a[0]==1d[0] one_down
3a[0]==1d[2]
three_across la[2]==2d[0]
- \
3a[2]==21d[2]
.y

Figure 4.6: crossword1.show()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

80 4. Reasoning with Constraints

89 The positions are relative to the words; starting at position 0.
90 meet_at(pl,p2) (wl,w2) is true if the same letter is at position pl1 of
word wil

91 and at position p2 of word w2.

92 e

93 def meets(wl,w2):

94 return wi[pl] == w2[p2]

95 meets.__name__ = f"meet_at({p1},{p2})"

9% return meets

97

98 |one_across = Variable('one_across', {'ant', 'big', 'bus', 'car', 'has'},
position=(0.1,0.9))

99 |one_down = Variable('one_down', {'book', 'buys', 'hold', 'lane', 'year'},
position=(0.9,0.9))

100 | two_down = Variable('two_down', {'ginger', 'search', 'symbol', 'syntax'},
position=(0.9,0.1))

101 | three_across = Variable('three_across', {'book', 'buys', 'hold', 'land',
'year'}, position=(0.1,0.5))

102 | four_across = Variable('four_across',{'ant', 'big', 'bus', 'car', 'has'},

position=(0.1,0.1))
103 | crosswordl = CSP("crossword1”,

104 {one_across, one_down, two_down, three_across,
four_across},

105 [Constraint([one_across,one_down],
meet_at(0,0),"1a[0]==1d[0]"),

106 Constraint([one_across, two_down],
meet_at(2,0),"1a[2]==2d[0]"),

107 Constraint([three_across, two_down],
meet_at(2,2),"3a[2]==21d[2]"),

108 Constraint([three_across,one_down],
meet_at(0,2),"3a[0]==1d[2]"),

109 Constraint([four_across, two_down],

meet_at(0,4),"4a[0]==2d[4]")

110 D

In an alternative representation of a crossword (the “dual” representation),
the variables represent letters, and the constraints are that adjacent sequences
of letters form words. This is shown in Figure[4.7,

cspExamples.py — (continued)

112 |words = {'ant', 'big', 'bus', 'car', 'has', 'book', 'buys', 'hold',
113 'lane', 'year', 'ginger', 'search', 'symbol', 'syntax'}
114

115 |def is_word(xletters, words=words):

116 """is true if the letters concatenated form a word in words"""
117 return "".join(letters) in words

118

119 |letters = {"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "1",
120 "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y",
121 "z"}

122

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

4.1. Constraint Satisfaction Problems

81

crosswordld

word(p00,p10,p20)

word(p00,p01,p02,p03)

word(p02,p12,p22,p32)

word(p20,p21,p22,p23,p24,p25)

word(p24, p34, p44)

Figure 4.7: crosswordld.show()

pij is the variable

(starting from @)
p0@ = Variable('poo@',
p1@ = Variable('p10',
p20 = Variable('p20',
p@1 = Variable('p@1',
p21 = Variable('p21',
p02 = Variable('p@2',
p12 = Variable('pl12',
p22 = Variable('p22',
p32 = Variable('p32',
p@3 = Variable('p®@3',
p23 = Variable('p23',
p24 = Variable('p24',
p34 = Variable('p34',
p44 = Variable('p44',
p25 = Variable('p25',

representing the letter i from the left and j down

letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,
letters,

position=(0.1,0.85))
position=(0.3,0.85))
position=(0.5,0.85))
position=(0.1,0.7))
position=(0.5,0.7))
position=(0.1,0.55))
position=(0.3,0.55))
position=(0.5,0.55))
position=(0.7,0.55))
position=(0.1,0.4))
position=(0.5,0.4))
position=(0.5,0.25))
position=(0.7,0.25))
position=(0.9,0.25))
position=(0.5,0.1))

crosswordld = CSP("crosswordld”,
{p00, p10, p20, # first row
po1, p21, # second row

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

143
144
145
146
147
148
149
150

151
152

153
154

155
156

157
158

160
161

162
163
164
165
166
167
168
169
170
171
172
173

82 4. Reasoning with Constraints

p02, pl12, p22, p32, # third row
p03, p23, #fourth row
p24, p34, p44d, # fifth row
p25 # sixth row
3,
[Constraint([p@@, p10, p20], is_word, "word(p0o,p10,p20)",
position=(0.3,0.95)), #1-across
Constraint([p0@, p@1, p@2, p03], is_word,
"word(p0o,po1,p02,p03)",
position=(0,0.625)), # 1-down
Constraint([p02, pl12, p22, p32]1, is_word,
"word(p@2,p12,p22,p32)",
position=(0.3,0.625)), # 3-across
Constraint([p20, p21, p22, p23, p24, p25], is_word,
"word(p20,p21,p22,p23,p24,p25)",
position=(0.45,0.475)), # 2-down
Constraint([p24, p34, p44], is_word, "word(p24, p34,
p4d)",
position=(0.7,0.325)) # 4-across
D

Exercise 4.1 How many assignments of a value to each variable are there for
each of the representations of the above crossword? Do you think an exhaustive
enumeration will work for either one?

The queens problem is a puzzle on a chess board, where the idea is to place
a queen on each column so the queens cannot take each other: there are no
two queens on the same row, column or diagonal. The n-queens problem is a
generalization where the size of the board is an n x 1, and n queens have to be
placed.

Here is a representation of the n-queens problem, where the variables are
the columns and the values are the rows in which the queen is placed. The
original queens problem on a standard (8 x 8) chess board is n_queens(8)

cspExamples.py — (continued)

def queens(ri,rj):
"""ri and rj are different rows, return the condition that the queens
cannot take each other"""
def no_take(ci,cj):
"""is true if queen at (ri,ci) cannot take a queen at (rj,cj)
return ci != cj and abs(ri-ci) != abs(rj-cj)
return no_take

nnn

def n_queens(n):
"""returns a CSP for n-queens
columns = list(range(n))
variables = [Variable(f"R{i}",columns) for i in range(n)]
note positions will be random
return CSP("n-queens”,
variables,

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

174
175
176
177
178

180
181
182
183
184
185
186
187
188
189
190
191

11
12
13

4.2. A Simple Depth-first Solver 83
[Constraint([variables[i], variables[j]1, queens(i,j),"")
for i in range(n) for j in range(n) if i != jl)

try the CSP n_queens(8) in one of the solvers.
What is the smallest n for which there is a solution?

Exercise 4.2 How many constraints does this representation of the n-queens
problem produce? Can it be done with fewer constraints? Either explain why it
can’t be done with fewer constraints, or give a solution using fewer constraints.
Unit tests

The following defines a unit test for csp solvers, by default using example csp1.

cspExamples.py — (continued)

def test_csp(CSP_solver, csp=cspl,
solutions=[{A: 1, B: 3, C: 4}, {A: 2, B: 3, C: 4}1):
"""CSP_solver is a solver that takes a csp and returns a solution
csp is a constraint satisfaction problem
solutions is the list of all solutions to csp
This tests whether the solution returned by CSP_solver is a solution.

nnn

print("Testing csp with",CSP_solver.__doc__)

s0l@ = CSP_solver(csp)

print(”"Solution found:",so0l@)

assert sol@ in solutions, f"Solution not correct for {csp}”
print(”"Passed unit test"”)

Exercise 4.3 Modify test so that instead of taking in a list of solutions, it checks
whether the returned solution actually is a solution.

Exercise 4.4 Propose a test that is appropriate for CSPs with no solutions. As-

sume that the test designer knows there are no solutions. Consider what a CSP
solver should return if there are no solutions to the CSP.

Exercise 4.5 Write a unit test that checks whether all solutions (e.g., for the search
algorithms that can return multiple solutions) are correct, and whether all solu-
tions can be found.

4.2 A Simple Depth-first Solver

The first solver carries out a depth-first search through the space of partial as-
signments. This takes in a CSP problem and an optional variable ordering (a
list of the variables in the CSP). It returns a generator of the solutions (see Sec-
tion|1.5.3|on yield for enumerations).

cspDFS.py — Solving a CSP using depth-first search.

import cspExamples
def dfs_solver(constraints, context, var_order):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

84 4. Reasoning with Constraints

nnn

generator for all solutions to csp.

context is an assignment of values to some of the variables.
var_order is a list of the variables in csp that are not in context.
to_eval = {c for c in constraints if c.can_evaluate(context)}

if all(c.holds(context) for c in to_eval):

if var_order == []:
yield context
else:

rem_cons = [c for c in constraints if c not in to_eval]
var = var_order[0]
for val in var.domain:
yield from dfs_solver(rem_cons, context|{var:val},
var_order[1:]1)

def dfs_solve_all(csp, var_order=None):
"""depth-first CSP solver to return a list of all solutions to csp.

nnn

if var_order == None: # use an arbitrary variable order
var_order = list(csp.variables)
return list(dfs_solver(csp.constraints, {3}, var_order))

def dfs_solvel(csp, var_order=None):
"""depth-first CSP solver"""
if var_order == None: # use an arbitrary variable order
var_order = list(csp.variables)
for sol in dfs_solver(csp.constraints, {3}, var_order):
return sol #return first one

if __name__ == "__main__":
cspExamples.test_csp(dfs_solvel)

#Try:

dfs_solve_all(cspExamples.cspl)

dfs_solve_all(cspExamples.csp2)

dfs_solve_all(cspExamples.crossword?l)

dfs_solve_all(cspExamples.crosswordld) # warning: may take a *very* long
time!

Exercise 4.6 Instead of testing all constraints at every node, change it so each
constraint is only tested when all of its variables are assigned. Given an elimina-
tion ordering, it is possible to determine when each constraint needs to be tested.
Implement this. Hint: create a parallel list of sets of constraints, where at each po-
sition 7 in the list, the constraints at position i can be evaluated when the variable
at position 7 has been assigned.

Exercise 4.7 Estimate how long dfs_solve_all(crosswordid) will take on your
computer. To do this, reduce the number of variables that need to be assigned,
so that the simplified problem can be solved in a reasonable time (between 0.1
second and 10 seconds). This can be done by reducing the number of variables in
var_order, as the program only splits on these. How much more time will it take

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

4.3. Converting CSPs to Search Problems 85

if the number of variables is increased by 1? (Try it!) Then extrapolate to all of the
variables. See Section for how to time your code. Would making the code 100
times faster or using a computer 100 times faster help?

4.3 Converting CSPs to Search Problems

To run the demo, in folder “aipython”, load “cspSearch.py”, and copy
and paste the example queries at the bottom of that file.

The next solver constructs a search space that can be solved using the search
methods of the previous chapter. This takes in a CSP problem and an optional
variable ordering, which is a list of the variables in the CSP. In this search space:

* A node is a variable : value dictionary which does not violate any con-
straints (so that dictionaries that violate any conmtratints are not added).

® An arc corresponds to an assignment of a value to the next variable. This
assumes a static ordering; the next variable chosen to split does not de-
pend on the context. If no variable ordering is given, this makes no at-
tempt to choose a good ordering.

cspSearch.py — Representations of a Search Problem from a CSP.

from cspProblem import CSP, Constraint
from searchProblem import Arc, Search_problem

class Search_from_CSP(Search_problem):
"""A search problem directly from the CSP.
A node is a variable:value dictionary”"""

def __init__(self, csp, variable_order=None):
self.csp=csp
if variable_order:

assert set(variable_order) == set(csp.variables)
assert len(variable_order) == len(csp.variables)
self.variables = variable_order

else:

self.variables = list(csp.variables)

def is_goal(self, node):
"""returns whether the current node is a goal for the search

nnn

return len(node)==len(self.csp.variables)

def start_node(self):
"""returns the start node for the search

nnn

return {3}

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

37
38
39
40
41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

86 4. Reasoning with Constraints

The neighbors(node) method uses the fact that the length of the node, which
is the number of variables already assigned, is the index of the next variable to
split on. Note that we do not need to check whether there are no more variables
to split on, as the nodes are all consistent, by construction, and so when there
are no more variables we have a solution, and so don’t need the neighbors.

cspSearch.py — (continued)

def neighbors(self, node):
"""returns a list of the neighboring nodes of node.
var = self.variables[len(node)] # the next variable
res = []
for val in var.domain:
new_env = node|{var:val} #dictionary union
if self.csp.consistent(new_env):
res.append(Arc(node,new_env))
return res

The unit tests relies on a solver. The following procedure creates a solver
using search that can be tested.

cspSearch.py — (continued)

import cspExamples
from searchGeneric import Searcher

def solver_from_searcher(csp):
"""depth-first search solver
path = Searcher(Search_from_CSP(csp)).search()
if path is not None:
return path.end()
else:
return None

nnn

",

if __name__ == "__main__
test_csp(solver_from_searcher)

Test Solving CSPs with Search:

searcher1 = Searcher(Search_from_CSP(cspExamples.csp1))
#print(searcheril.search()) # get next solution

searcher2 = Searcher(Search_from_CSP(cspExamples.csp2))
#print(searcher2.search()) # get next solution

searcher3 = Searcher(Search_from_CSP(cspExamples.crosswordl))
#print(searcher3.search()) # get next solution

searcher4 = Searcher(Search_from_CSP(cspExamples.crosswordid))
#print(searcher4.search()) # get next solution (warning: slow)

Exercise 4.8 What would happen if we constructed the new assignment by as-
signing node[var] = val (with side effects) instead of using dictionary union? Give
an example of where this could give a wrong answer. How could the algorithm be
changed to work with side effects? (Hint: think about what information needs to
be in a node).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20

22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39

4.4. Consistency Algorithms 87

Exercise 4.9 Change neighbors so that it returns an iterator of values rather than
a list. (Hint: use yield.)

4.4 Consistency Algorithms

To run the demo, in folder “aipython”, load “cspConsistency.py”, and
copy and paste the commented-out example queries at the bottom of
that file.

A Con_solver is used to simplify a CSP using arc consistency.

cspConsistency.py — Arc Consistency and Domain splitting for solving a CSP

from display import Displayable

class Con_solver(Displayable):
"""Solves a CSP with arc consistency and domain splitting

nnn

def __init__(self, csp):

"""3 CSP solver that uses arc consistency
* csp is the CSP to be solved

nnn

self.csp = csp

The following implementation of arc consistency maintains the set to_do of
(variable, constraint) pairs that are to be checked. It takes in a domain dic-
tionary and returns a new domain dictionary. It needs to be careful to avoid
side effects; this is implemented here by copying the domains dictionary and
the to_do set.

cspConsistency.py — (continued)

def make_arc_consistent(self, domains=None, to_do=None):
"""Makes this CSP arc-consistent using generalized arc consistency
domains is a variable:domain dictionary
to_do is a set of (variable,constraint) pairs
returns the reduced domains (an arc-consistent variable:domain
dictionary)
if domains is None:
self.domains = {var:var.domain for var in self.csp.variables}
else:
self.domains = domains.copy() # use a copy of domains
if to_do is None:
to_do = {(var, const) for const in self.csp.constraints
for var in const.scope}
else:
to_do = to_do.copy() # use a copy of to_do
self.display(5, "Performing AC with domains”, self.domains)
while to_do:
self.arc_selected = (var, const) = self.select_arc(to_do)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

40
41
42
43

44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67

68
69
70

88 4. Reasoning with Constraints

n on

self.display(5, "Processing arc (", var, ",", const, ")")
other_vars = [ov for ov in const.scope if ov != var]
new_domain = {val for val in self.domains[var]
if self.any_holds(self.domains, const, {var:
val}, other_vars)}
if new_domain != self.domains[var]:
self.add_to_do = self.new_to_do(var, const) - to_do
self.display(3, f"Arc: ({var}, {const}) is inconsistent\n”
f"Domain pruned, dom({var}) ={new_domain} due to
{const}")
self.domains[var] = new_domain
self.display(4, " adding”, self.add_to_do if self.add_to_do
else "nothing”, "to to_do.")
to_do |= self.add_to_do # set union
self.display(5, f"Arc: ({var},{const}) now consistent”)
self.display(5, "AC done. Reduced domains”, self.domains)
return self.domains

def new_to_do(self, var, const):
"""returns new elements to be added to to_do after assigning
variable var in constraint const.

nnn

return {(nvar, nconst) for nconst in self.csp.var_to_const[var]

if nconst != const
for nvar in nconst.scope
if nvar != var}

The following selects an arc. Any element of fo_do can be selected. The se-
lected element needs to be removed from to_do. The default implementation
just selects which ever element pop method for sets returns. The graphical user
interface below allows the user to select an arc. Alternatively, a more sophisti-
cated selection could be employed.

cspConsistency.py — (continued)

def select_arc(self, to_do):
"""Selects the arc to be taken from to_do .
* to_do is a set of arcs, where an arc is a (variable,constraint)
pair
the element selected must be removed from to_do.

nnn

return to_do.pop()

The value of new_domain is the subset of the domain of var that is consistent
with the assignment to the other variables. To make it easier to understand, the
following treats unary (with no other variables in the constraint) and binary
(with one other variables in the constraint) constraints as special cases. These
cases are not strictly necessary; the last case covers the first two cases, but is
more difficult to understand without seeing the first two cases. Note that this
case analysis is not in the code distribution, but can replace the assignment to
new_domain above.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

72
73
74
75
76
77
78
79
80
81
82

83
84

86
87
88
89
90
91

4.4. Consistency Algorithms 89

if len(other_vars)==0: # unary constraint
new_domain = {val for val in self.domains[var]
if const.holds({var:val})}
elif len(other_vars)==1: # binary constraint
other = other_vars[0]
new_domain = {val for val in self.domains[var]
if any(const.holds({var: val,other:other_val})
for other_val in self.domains[other])}
else: # general case
new_domain = {val for val in self.domains[var]
if self.any_holds(self.domains, const, {var: val}, other_vars)}

any_holds is a recursive function that tries to finds an assignment of values to the
other variables (other_vars) that satisfies constraint const given the assignment
in env. The integer variable ind specifies which index to other_vars needs to be
checked next. As soon as one assignment returns True, the algorithm returns
True.

cspConsistency.py — (continued)

def any_holds(self, domains, const, env, other_vars, ind=0):
"""returns True if Constraint const holds for an assignment
that extends env with the variables in other_vars[ind:]
env is a dictionary
if ind == len(other_vars):
return const.holds(env)
else:
var = other_vars[ind]
for val in domains[var]:
if self.any_holds(domains, const, env|{var:val}, other_vars,
ind + 1):
return True
return False

4.4.1 Direct Implementation of Domain Splitting

The following is a direct implementation of domain splitting with arc consis-
tency. It implements the generator interface of Python (see Section[1.5.3). When
it has found a solution it yields the result; otherwise it recursively splits a do-
main (using yield from).

cspConsistency.py — (continued)
def generate_sols(self, domains=None, to_do=None, context=dict()):
"""return list of all solution to the current CSP
to_do is the list of arcs to check
context is a dictionary of splits made (used for display)

nnn

new_domains = self.make_arc_consistent(domains, to_do)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

92
93
94
95
96
97
98
99

100
101
102
103
104
105

106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

127
128
129
130
131
132
133
134
135
136

90

4. Reasoning with Constraints

if any(len(new_domains[var]) == @ for var in new_domains):
self.display(1,f"No solutions for context {context}")
elif all(len(new_domains[var]) == 1 for var in new_domains):

self.display(1, "solution:", str({var: select(
new_domains[var]) for var in new_domains}))

yield {var: select(new_domains[var]) for var in new_domains}

else:

var = self.select_var(x for x in self.csp.variables if
len(new_domains[x]) > 1)

dom1, dom2 = partition_domain(new_domains[var])

self.display(5, "...splitting", var, "into"”, doml, "and", dom2)

new_doms1 = new_domains | {var:doml1}

new_doms2 = new_domains | {var:dom2}

to_do = self.new_to_do(var, None)

self.display(4, " adding”, to_do if to_do else "nothing”, "to
to_do.")

yield from self.generate_sols(new_doms1, to_do,
context|{var:dom1})

yield from self.generate_sols(new_doms2, to_do,
context|{var:doml1})

def solve_all(self, domains=None, to_do=None):
return list(self.generate_sols())

def solve_one(self, domains=None, to_do=None):
return select(self.generate_sols())

def select_var(self, iter_vars):
"""return the next variable to split”""
return select(iter_vars)

def partition_domain(dom):

nnn

partitions domain dom into two.
split = len(dom) // 2

doml = set(list(dom)[:split])
dom2 = dom - doml

return dom1, dom2

cspConsistency.py — (continued)

def select(iterable):

nnn

select an element of iterable.
Returns None if there is no such element.

This implementation just picks the first element.
For many uses, which element is selected does not affect correctness,
but may affect efficiency.
for e in iterable:
return e # returns first element found

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

138
139
140
141
142
143
144
145

4.4. Consistency Algorithms 91

click on to_do (blue) arc

A
{1, 2, 3, 4}

|A—Eisodd| |B<E|

2 \ D<C /
{1,2, 3,4}

Auto AC E
{1,2,3,4}

Figure 4.8: ConsistencyGUI(cspExamples.csp3).go()

€
{1, 2, 3, 4}

Exercise 4.10 Implement solve_all that returns the set of all solutions without
using yield. Hint: it can be like generate_sols but returns a set of solutions; the
recursive calls can be unioned; | is Python’s union.

Exercise 4.11 Implement solve_one that returns one solution if one exists, or False
otherwise, without using yield. Hint: Python’s “or” has the behavior A or B will
return the value of A unless it is None or False, in which case the value of B is
returned.

Unit test:

cspConsistency.py — (continued)

import cspExamples
def ac_solver(csp):
"arc consistency (ac_solver)”
for sol in Con_solver(csp).generate_sols():
return sol
if __name__ == "__main__
cspExamples.test_csp(ac_solver)

",

4.4.2 Consistency GUI

The consistency GUI allows students to step through the algorithm, choosing
which arc to process next, and which variable to split.

Figure 4.8/ shows the state of the GUI after two arcs have been made arc
consistent. The arcs on the to_do list arc colored blue. The green arcs are those
have been made arc consistent. The user can click on a blue arc to process

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48

92 4. Reasoning with Constraints

that arc. If the arc selected is not arc consistent, it is made red, the domain is
reduced, and then the arc becomes green. If the arc was already arc consistent
it turns green.

This is implemented by overriding select_arc and select_var to allow the
user to pick the arcs and the variables, and overriding display to allow for the
animation. Note that the first argument of display (the number) in the code
above is interpreted with a special meaning by the GUI and should only be
changed with care.

Clicking AutoAC automates arc selection until the network is arc consistent.

cspConsistencyGUI.py — GUI for consistency-based CSP solving

from cspConsistency import Con_solver
import matplotlib.pyplot as plt

class ConsistencyGUI(Con_solver):
def __init__(self, csp, fontsize=10, speed=1, **kwargs):
csp is the csp to show
fontsize is the size of the text
speed is the number of animations per second (controls delay_time)
1 (slow) and 4 (fast) seem like good values

self.fontsize = fontsize
self.delay_time = 1/speed
self.quitting = False
Con_solver.__init__(self, csp, xxkwargs)
csp.show(showAutoAC = True)
csp.fig.canvas.mpl_connect('close_event', self.window_closed)

def go(self):
try:
res = self.solve_all()
self.csp.draw_graph(domains=self.domains,
title="No more solutions. GUI finished. ",
fontsize=self.fontsize)
return res
except ExitToPython:
print("GUI closed")

def select_arc(self, to_do):
while True:
self.csp.draw_graph(domains=self.domains, to_do=to_do,
title="click on to_do (blue) arc”,
fontsize=self.fontsize)
self.wait_for_user()
if self.csp.autoAC:
break

picked = self.csp.picked
self.csp.picked = None
if picked in to_do:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

4.4. Consistency Algorithms

to_do.remove(picked)

print(f"{picked}
return picked
else:

picked")

93

print(f"{picked} not in to_do. Pick one of {to_do}")

if self.csp.autoAC:

self.csp.draw_graph(domains=self.domains, to_do=to_do,
title="Auto AC", fontsize=self.fontsize)
plt.pause(self.delay_time)

return to_do.pop()

def select_var(self, iter_vars):

vars = list(iter_vars)
while True:

self.csp.draw_graph(domains=self.domains,
title="Arc consistent. Click node to

split”,
fontsize=self.fontsize)

self.csp.autoAC = False

self.wait_for_user()

picked = self.csp.picked
self.csp.picked = None

if picked in vars:

#print("splitting”,picked)

return picked
else:

print(picked, "not in",vars)

def display(self,n,*args,**nargs):

if n <= self.max_display_level: # default display

print(xargs, **nargs)
if n==1: # solution found or no solutions”
self.csp.draw_graph(domains=self.domains, to_do=set(),

title=' '.join(args)+":
arc to continue”,
fontsize=self.fontsize)

self.csp.autoAC = False

self.wait_for_user()

self.csp.picked = None
elif n==2: # backtracking
plt.title("backtracking: click any node or arc to continue”)
self.csp.autoAC = False

self.wait_for_user()

self.csp.picked = None

elif n==3: # inconsistent arc
line = self.csp.thelines[self.arc_selected]
line.set_color('red")
line.set_linewidth(10)
plt.pause(self.delay_time)
line.set_color('limegreen')

https://aipython.org

Version 0.9.15

click any node or

December 23, 2024

https://aipython.org

97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

94 4. Reasoning with Constraints

line.set_linewidth(self.csp.linewidth)
#elif n==4 and self.add_to_do: # adding to to_do
print(”"adding to to_do",self.add_to_do) ## highlight these arc

def wait_for_user(self):
while self.csp.picked == None and not self.csp.autoAC and not
self.quitting:
plt.pause(@.01) # controls reaction time of GUI
if self.quitting:
raise ExitToPython()

def window_closed(self, event):
self.quitting = True

class ExitToPython(Exception):
pass

import cspExamples

Try:

ConsistencyGUI (cspExamples.cspl).go()

ConsistencyGUI (cspExamples.csp3).go()

ConsistencyGUI (cspExamples.csp3, speed=4, fontsize=15).go()

if __name__ == "__main__
print("Try e.g.: ConsistencyGUI(cspExamples.csp3).go()")

",

4.4.3 Domain Splitting as an interface to graph searching

An alternative implementation is to implement domain splitting in terms of
the search abstraction of Chapter
A node is a dictionary that maps the variables to their (pruned) domains..

cspConsistency.py — (continued)

from searchProblem import Arc, Search_problem

class Search_with_AC_from_CSP(Search_problem,Displayable):
"""A search problem with arc consistency and domain splitting

A node is a CSP """

def __init__(self, csp):
self.cons = Con_solver(csp) #copy of the CSP
self.domains = self.cons.make_arc_consistent()

def is_goal(self, node):
"""node is a goal if all domains have 1 element
return all(len(nodel[var])==1 for var in node)

nnn

def start_node(self):
return self.domains

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

183
184
185
186
187
188
189
190
191
192
193

195
196
197
198
199
200
201
202
203

4.4. Consistency Algorithms 95

def neighbors(self,node):
"""returns the neighboring nodes of node.

nnn

neighs = []
var = select(x for x in node if len(node[x])>1)
if var:

dom1, dom2 = partition_domain(node[var])
self.display(2,"Splitting”, var, "into", doml, "and", dom2)
to_do = self.cons.new_to_do(var,None)
for dom in [doml,dom2]:
newdoms = node | {var:dom}
cons_doms = self.cons.make_arc_consistent(newdoms,to_do)
if all(len(cons_doms[v])>0 for v in cons_doms):
all domains are non-empty
neighs.append(Arc(node, cons_doms))
else:
self.display(2,”...",var,"in" ,dom, "has no solution")
return neighs

Exercise 4.12 When splitting a domain, this code splits the domain into half,
approximately in half (without any effort to make a sensible choice). Does it work
better to split one element from a domain?

Unit test:

cspConsistency.py — (continued)

import cspExamples
from searchGeneric import Searcher

def ac_search_solver(csp):
"""arc consistency (search interface)
sol = Searcher(Search_with_AC_from_CSP(csp)).search()
if sol:
return {v:select(d) for (v,d) in sol.end().items()}

nnn

if __name__ == "__main__":
cspExamples.test_csp(ac_search_solver)

Testing:

cspConsistency.py — (continued)

Test Solving CSPs with Arc consistency and domain splitting:
#Con_solver.max_display_level = 4 # display details of AC (@ turns off)
#Con_solver(cspExamples.cspl).solve_all()

#searcherld = Searcher(Search_with_AC_from_CSP(cspExamples.csp1))
#print(searcherid.search())

#Searcher.max_display_level = 2 # display search trace (@ turns off)
#searcher2c = Searcher(Search_with_AC_from_CSP(cspExamples.csp2))
#print(searcher2c.search())

#searcher3c = Searcher(Search_with_AC_from_CSP(cspExamples.crossword1l))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

204
205
206

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

96 4. Reasoning with Constraints

#print(searcher3c.search())
#searcher4c = Searcher(Search_with_AC_from_CSP(cspExamples.crosswordid))
#print(searcher4c.search())

4.5 Solving CSPs using Stochastic Local Search

To run the demo, in folder “aipython”, load “cspSLS.py”, and copy
and paste the commented-out example queries at the bottom of that
file. This assumes Python 3. Some of the queries require matplotlib.

The following code implements the two-stage choice (select one of the vari-
ables that are involved in the most constraints that are violated, then a value),
the any-conflict algorithm (select a variable that participates in a violated con-
straint) and a random choice of variable, as well as a probabilistic mix of the
three.

Given a CSP, the stochastic local searcher (SLSearcher) creates the data struc-
tures:

* variables_to_select is the set of all of the variables with domain-size greater
than one. For a variable not in this set, we cannot pick another value from
that variable.

* var_to_constraints maps from a variable into the set of constraints it is in-
volved in. Note that the inverse mapping from constraints into variables
is part of the definition of a constraint.

cspSLS.py — Stochastic Local Search for Solving CSPs
from cspProblem import CSP, Constraint

from searchProblem import Arc, Search_problem

from display import Displayable

import random

import heapq

class SLSearcher(Displayable):
"""A search problem directly from the CSP..
A node is a variable:value dictionary”""
def __init__(self, csp):
self.csp = csp
self.variables_to_select = {var for var in self.csp.variables
if len(var.domain) > 1}
Create assignment and conflicts set
self.current_assignment = None # this will trigger a random restart
self.number_of_steps = @ #number of steps after the initialization

restart creates a new total assignment, and constructs the set of conflicts (the
constraints that are false in this assignment).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47

48

49

4.5. Solving CSPs using Stochastic Local Search 97

cspSLS.py — (continued)

def restart(self):
"""creates a new total assignment and the conflict set

nnn

self.current_assignment = {var:random_choice(var.domain) for
var in self.csp.variables}
self.display(2,"Initial assignment”,self.current_assignment)
self.conflicts = set()
for con in self.csp.constraints:
if not con.holds(self.current_assignment):
self.conflicts.add(con)
self.display(2, "Number of conflicts”,len(self.conflicts))
self.variable_pg = None

The search method is the top-level searching algorithm. It can either be used
to start the search or to continue searching. If there is no current assignment,
it must create one. Note that, when counting steps, a restart is counted as one
step, which is not appropriate for CSPs with many variables, as it is a relatively
expensive operation for these cases.

This method selects one of two implementations. The argument prob_best
is the probability of selecting a best variable (one involving the most conflicts).
When the value of prob_best is positive, the algorithm needs to maintain a prior-
ity queue of variables and the number of conflicts (using search_with_var_pq). If
the probability of selecting a best variable is zero, it does not need to maintain
this priority queue (as implemented in search_with_any_conflict).

The argument prob_anycon is the probability that the any-conflict strategy is
used (which selects a variable at random that is in a conflict), assuming that
it is not picking a best variable. Note that for the probability parameters, any
value less that zero acts like probability zero and any value greater than 1 acts
like probability 1. This means that when prob_anycon = 1.0, a best variable is
chosen with probability prob_best, otherwise a variable in any conflict is chosen.
A variable is chosen at random with probability 1 — prob_anycon — prob_best as
long as that is positive.

This returns the number of steps needed to find a solution, or None if no
solution is found. If there is a solution, it is in self .current_assignment.

cspSLS.py — (continued)
def search(self,max_steps, prob_best=0, prob_anycon=1.0):

returns the number of steps or None if these is no solution.
If there is a solution, it can be found in self.current_assignment

max_steps is the maximum number of steps it will try before giving
up

prob_best is the probability that a best variable (one in most
conflict) is selected

prob_anycon is the probability that a variable in any conflict is
selected

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

50
51
52
53
54
55
56

57
58
59

60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81

98 4. Reasoning with Constraints

(otherwise a variable is chosen at random)

nnn

if self.current_assignment is None:
self.restart()
self.number_of_steps += 1
if not self.conflicts:
self.display(1,"Solution found:", self.current_assignment,
"after restart")
return self.number_of_steps
if prob_best > 0: # we need to maintain a variable priority queue
return self.search_with_var_pg(max_steps, prob_best,
prob_anycon)
else:
return self.search_with_any_conflict(max_steps, prob_anycon)

Exercise 4.13 This does an initial random assignment but does not do any ran-
dom restarts. Implement a searcher that takes in the maximum number of walk
steps (corresponding to existing max_steps) and the maximum number of restarts,
and returns the total number of steps for the first solution found. (As in search, the
solution found can be extracted from the variable self .current_assignment).

4.5.1 Any-conflict

In the any-conflict heuristic a variable that participates in a violated constraint
is picked at random. The implementation need to keeps track of which vari-
ables are in conflicts. This is can avoid the need for a priority queue that is
needed when the probability of picking a best variable is greater than zero.

cspSLS.py — (continued)

def search_with_any_conflict(self, max_steps, prob_anycon=1.0):
"""Searches with the any_conflict heuristic.
This relies on just maintaining the set of conflicts;
it does not maintain a priority queue
self.variable_pq = None # we are not maintaining the priority queue.
This ensures it is regenerated if
we call search_with_var_pq.
for i in range(max_steps):
self.number_of_steps +=1
if random.random() < prob_anycon:
con = random_choice(self.conflicts) # pick random conflict
var = random_choice(con.scope) # pick variable in conflict
else:
var = random_choice(self.variables_to_select)
if len(var.domain) > 1:
val = random_choice([val for val in var.domain
if val is not
self.current_assignment[var]])
self.display(2,self.number_of_steps,"”:
Assigning”, var,"=" val)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

99
100
101
102
103
104
105
106
107
108
109
110
111

4.5. Solving CSPs using Stochastic Local Search 99

self.current_assignment[var]=val
for varcon in self.csp.var_to_const[var]:
if varcon.holds(self.current_assignment):
if varcon in self.conflicts:
self.conflicts.remove(varcon)
else:
if varcon not in self.conflicts:
self.conflicts.add(varcon)

self.display(2,” Number of conflicts”,len(self.conflicts))
if not self.conflicts:
self.display(1,"Solution found:", self.current_assignment,

nion

in", self.number_of_steps,"steps”)
return self.number_of_steps
self.display(1,"”No solution in",self.number_of_steps, "steps”,
len(self.conflicts),"conflicts remain”)
return None

Exercise 4.14 This makes no attempt to find the best value for the variable se-
lected. Modify the code to include an option selects a value for the selected vari-
able that reduces the number of conflicts the most. Have a parameter that specifies
the probability that the best value is chosen, and otherwise chooses a value at ran-
dom.

4.5.2 Two-Stage Choice

This is the top-level searching algorithm that maintains a priority queue of
variables ordered by the number of conflicts, so that the variable with the most
conflicts is selected first. If there is no current priority queue of variables, one
is created.

The main complexity here is to maintain the priority queue. When a vari-
able var is assigned a value val, for each constraint that has become satisfied
or unsatisfied, each variable involved in the constraint need to have its count
updated. The change is recorded in the dictionary var_differential, which is used
to update the priority queue (see Section 4.5.3).

cspSLS.py — (continued)

def search_with_var_pq(self,max_steps, prob_best=1.0, prob_anycon=1.0):
"""search with a priority queue of variables.
This is used to select a variable with the most conflicts.
if not self.variable_pq:
self.create_pg()
pick_best_or_con = prob_best + prob_anycon
for i in range(max_steps):
self.number_of_steps +=1
randnum = random.random()
Pick a variable
if randnum < prob_best: # pick best variable
var,oldval = self.variable_pq.top()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132

133
134
135
136
137

138

139
140
141
142

143
144
145
146
147

149
150

100 4. Reasoning with Constraints

elif randnum < pick_best_or_con: # pick a variable in a conflict
con = random_choice(self.conflicts)
var = random_choice(con.scope)
else: i#pick any variable that can be selected
var = random_choice(self.variables_to_select)
if len(var.domain) > 1: # var has other values
Pick a value
val = random_choice([val for val in var.domain if val is not
self.current_assignment[var]])
self.display(2,"Assigning”,var,val)
Update the priority queue
var_differential = {}
self.current_assignment[var]=val
for varcon in self.csp.var_to_const[var]:
self.display(3, "Checking”,varcon)
if varcon.holds(self.current_assignment):
if varcon in self.conflicts: # became consistent
self.display(3, "Became consistent”,varcon)
self.conflicts.remove(varcon)
for v in varcon.scope: # v is in one fewer
conflicts
var_differential[v] =
var_differential.get(v,0)-1
else:
if varcon not in self.conflicts: # was consis, not now
self.display(3, "Became inconsistent”,varcon)
self.conflicts.add(varcon)
for v in varcon.scope: # v is in one more
conflicts
var_differentiall[v] =
var_differential.get(v,0)+1
self.variable_pq.update_each_priority(var_differential)
self.display(2, "Number of conflicts”,len(self.conflicts))
if not self.conflicts: # no conflicts, so solution found
self.display(1,"Solution found:",
self.current_assignment,”in",
self.number_of_steps, "steps”)
return self.number_of_steps
self.display(1,"No solution in",self.number_of_steps,"steps”,
len(self.conflicts),"conflicts remain”)
return None

create_pq creates an updatable priority queue of the variables, ordered by the
number of conflicts they participate in. The priority queue only includes vari-
ables in conflicts and the value of a variable is the negative of the number of
conflicts the variable is in. This ensures that the priority queue, which picks
the minimum value, picks a variable with the most conflicts.

cspSLS.py — (continued)

def create_pqg(self):
"""Create the variable to number-of-conflicts priority queue.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

4.5. Solving CSPs using Stochastic Local Search 101

151 This is needed to select the variable in the most conflicts.
152
153 The value of a variable in the priority queue is the negative of the
154 number of conflicts the variable appears in.
155 e
156 self.variable_pqg = Updatable_priority_queue()
157 var_to_number_conflicts = {}
158 for con in self.conflicts:
159 for var in con.scope:
160 var_to_number_conflicts[var] =
var_to_number_conflicts.get(var,0)+1
161 for var,num in var_to_number_conflicts.items():
162 if num>0:
163 self.variable_pq.add(var,-num)
cspSLS.py — (continued)
165 | def random_choice(st):
166 """selects a random element from set st.
167 It would be more efficient to convert to a tuple or list only once
168 (left as exercise).""”
169 return random.choice(tuple(st))

Exercise 4.15 These implementations always select a value for the variable se-
lected that is different from its current value (if that is possible). Change the code
so that it does not have this restriction (so it can leave the value the same). Would
you expect this code to be faster? Does it work worse (or better)?

4.5.3 Updatable Priority Queues

An updatable priority queue is a priority queue, where key-value pairs can be
stored, and the pair with the smallest key can be found and removed quickly,
and where the values can be updated. This implementation follows the idea
of http://docs.python.org/3.9/1library/heapq.html, where the updated ele-
ments are marked as removed. This means that the priority queue can be used
unmodified. However, this might be expensive if changes are more common
than popping (as might happen if the probability of choosing the best is close
to zero).

In this implementation, the equal values are sorted randomly. This is achieved
by having the elements of the heap being [val, rand, elt| triples, where the sec-
ond element is a random number. Note that Python requires this to be a list,
not a tuple, as the tuple cannot be modified.

cspSLS.py — (continued)

171 | class Updatable_priority_queue(object):

172 """A priority queue where the values can be updated.
173 Elements with the same value are ordered randomly.
174

175 This code is based on the ideas described in

https://aipython.org Version 0.9.15 December 23, 2024

http://docs.python.org/3.9/library/heapq.html
https://aipython.org

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

102 4. Reasoning with Constraints

http://docs.python.org/3.3/1ibrary/heapq.html

It could probably be done more efficiently by

shuffling the modified element in the heap.

def __init__(self):
self.pq = [] # priority queue of [val,rand,elt] triples
self.elt_map = {} # map from elt to [val,rand,elt] triple in pq
self .REMOVED = "*xremovedx” # a string that won't be a legal element
self.max_size=0

def add(self,elt,val):
"""adds elt to the priority queue with priority=val.
assert val <= 0,val
assert elt not in self.elt_map, elt
new_triple = [val, random.random(),elt]
heapq.heappush(self.pq, new_triple)
self.elt_mapl[elt] = new_triple

def remove(self,elt):
"""remove the element from the priority queue
if elt in self.elt_map:
self.elt_map[elt][2] = self.REMOVED
del self.elt_map[elt]

nnn

def update_each_priority(self,update_dict):
"""update values in the priority queue by subtracting the values in
update_dict from the priority of those elements in priority queue.
for elt,incr in update_dict.items():
if incr !'= 0:

newval = self.elt_map.get(elt,[0]1)[@] - incr

assert newval <= 0, f"{elt}:{newval+incr}-{incr}”

self.remove(elt)

if newval != 0:

self.add(elt,newval)

def pop(self):
"""Removes and returns the (elt,value) pair with minimal value.
If the priority queue is empty, IndexError is raised.
self.max_size = max(self.max_size, len(self.pq)) # keep statistics
triple = heapq.heappop(self.pq)
while triple[2] == self.REMOVED:
triple = heapq.heappop(self.pq)
del self.elt_map[triple[2]]
return triple[2], triple[0] # elt, value

def top(self):
"""Returns the (elt,value) pair with minimal value, without

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255
256
257

258
259
260
261

4.5. Solving CSPs using Stochastic Local Search 103

removing it.
If the priority queue is empty, IndexError is raised.
self.max_size = max(self.max_size, len(self.pq)) # keep statistics
triple = self.pql[0]
while triple[2] == self.REMOVED:

heapq.heappop(self.pq)

triple = self.pq[0@]
return triple[2], triple[0@] # elt, value

def empty(self):
"""returns True iff the priority queue is empty
return all(triple[2] == self.REMOVED for triple in self.pq)

nnn

4.5.4 Plotting Run-Time Distributions

Runtime_distribution uses matplotlib to plot run time distributions. Here the
run time is a misnomer as we are only plotting the number of steps, not the
time. Computing the run time is non-trivial as many of the runs have a very
short run time. To compute the time accurately would require running the
same code, with the same random seed, multiple times to get a good estimate
of the run time. This is left as an exercise.

cspSLS.py — (continued)

import matplotlib.pyplot as plt
plt.style.use('grayscale')

class Runtime_distribution(object):
def __init__(self, csp, xscale='log'):

"""Sets up plotting for csp
xscale is either 'linear' or 'log'
self.csp = csp
plt.ion()
plt.xlabel(”"Number of Steps")
plt.ylabel(”"Cumulative Number of Runs")
plt.xscale(xscale) # Makes a 'log' or 'linear' scale

def plot_runs(self,num_runs=100,max_steps=1000, prob_best=1.0,

prob_anycon=1.0):

"""Plots num_runs of SLS for the given settings.

stats = []

SLSearcher.max_display_level, temp_mdl = @,
SLSearcher.max_display_level # no display

for i in range(num_runs):
searcher = SLSearcher(self.csp)
num_steps = searcher.search(max_steps, prob_best, prob_anycon)
if num_steps:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

262
263
264
265
266
267
268
269
270
271

273
274
275
276
277
278
279
280

104 4. Reasoning with Constraints

10001 —— P(best)=0.00, P(ac)=1.00
P(best)=1.0
—— P(best)=0.70, P(ac)=0.30
.~ 800
c
35
o
Y
o
5 600
Q
£
=)
=2
(]
2 400
©
3
£
=)
“ 200
0-

10° 10! 10?2 103
Number of Steps

Figure 4.9: Run-time distributions for three algorithms on csp2.

stats.append(num_steps)

stats.sort()
if prob_best >= 1.0:

label = "P(best)=1.0"
else:

p_ac = min(prob_anycon, 1-prob_best)

label = "P(best)=%.2f, P(ac)=%.2f" % (prob_best, p_ac)
plt.plot(stats,range(len(stats)),label=1abel)
plt.legend(loc="upper left")
SLSearcher.max_display_level= temp_mdl #restore display

Figure [4.9] gives run-time distributions for 3 algorithms. It is also useful to
compare the distributions of different runs of the same algorithms and settings.

455 Testing

cspSLS.py — (continued)

import cspExamples

def sls_solver(csp,prob_best=0.7):
"""stochastic local searcher (prob_best=0.7)
se@ = SLSearcher(csp)
se@.search(1000,prob_best)
return se@.current_assignment

def any_conflict_solver(csp):
"""stochastic local searcher (any-conflict)

nnn

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

281
282
283
284
285
286
287
288
289
290

291

292
293
294
295
296
297

11
12
13
14
15

16

17

4.6. Discrete Optimization 105

return sls_solver(csp,9)
if __name__ == "__main__

cspExamples. test_csp(sls_solver)

cspExamples.test_csp(any_conflict_solver)

",

Test Solving CSPs with Search:

#sel = SLSearcher(cspExamples.csp1); print(sel.search(100))

#se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,1.0)) # greedy

#se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,0)) #
any_conflict

#se2 = SLSearcher(cspExamples.csp2); print(se2.search(1000,0.7)) # 70%
greedy; 30% any_conflict

#SLSearcher.max_display_level=2 #more detailed display

#se3 = SLSearcher(cspExamples.crosswordl); print(se3.search(100),0.7)

#p = Runtime_distribution(cspExamples.csp2)

#p.plot_runs(1000,1000,0) # any_conflict

#p.plot_runs(1000,1000,1.0) # greedy

#p.plot_runs(1000,1000,0.7) # 70% greedy; 30% any_conflict

Exercise 4.16 Modify this to plot the run time, instead of the number of steps.
To measure run time use timeit (https://docs.python.org/3.9/1library/timeit.
html). Small run times are inaccurate, so timeit can run the same code multi-
ple times. Stochastic local algorithms give different run times each time called.
To make the timing meaningful, you need to make sure the random seed is the
same for each repeated call (see random.getstate and random.setstate in https:
//docs.python.org/3.9/1library/random.html). Because the run time for differ-
ent seeds can vary a great deal, for each seed, you should start with 1 iteration and
multiplying it by, say 10, until the time is greater than 0.2 seconds. Make sure you
plot the average time for each run. Before you start, try to estimate the total run
time, so you will be able to tell if there is a problem with the algorithm stopping.

4.6 Discrete Optimization

A SoftConstraint is a constraint, but where the condition is a real-valued cost
function. The aim is to find the assignment with the lowest sum of costs. Be-
cause the definition of the constraint class did not force the condition to be
Boolean, you can use the Constraint class for soft constraints too.

cspSoft.py — Representations of Soft Constraints
from cspProblem import Variable, Constraint, CSP
class SoftConstraint(Constraint):
"""A Constraint consists of
* scope: a tuple of variables
* function: a real-valued costs function that can applied to a tuple of
values
* string: a string for printing the constraints. All of the strings
must be unique.
for the variables

https://aipython.org Version 0.9.15 December 23, 2024

https://docs.python.org/3.9/library/timeit.html
https://docs.python.org/3.9/library/timeit.html
https://docs.python.org/3.9/library/random.html
https://docs.python.org/3.9/library/random.html
https://aipython.org

18
19
20
21
22
23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

106

nnn

4. Reasoning with Constraints

def __init__(self, scope, function, string=None, position=None):
Constraint.__init__(self, scope, function, string, position)

def value(self,assignment):
return self.holds(assignment)

cspSoft.py — (continued)

OO W >
1

def cifun(a,b):

Variable('A', {1,2}, position=(0.2,0.9))
Variable('B', {1,2,3}, position=(0.8,0.9))
Variable('C', {1,2}, position=(0.5,0.5))
Variable('D', {1,2}, position=(0.8,0.1))

if a==1: return (5 if b==1 else 2)
else: return (0 if b==1 else 4 if b==2 else 3)
cl = SoftConstraint([A,B],c1fun,"c1")

def c2fun(b,c):

if b==1: return (5 if c==1 else 2)
elif b==2: return (0 if c==1 else 4)
else: return (2 if c==1 else 0)

c2 = SoftConstraint([B,C],c2fun,"c2")

def c3fun(b,d):

if b==1: return (3 if d==1 else 0)

elif b==2: return 2

else: return (2 if d==1 else 4)
c3 = SoftConstraint([B,D],c3fun, "c3")

def penalty_if_same(pen):

"returns a function that gives a penalty of pen if the arguments are

the same”

return lambda x,y: (pen if (x==y) else 0)

c4 = SoftConstraint([C,A],penalty_if_same(3),"c4")

scspl = CSP("scsp1”, {A,B,C,D}, [cl1,c2,c3,c4])

The second soft CSP has an extra variable, and 2 constraints
E = Variable('E', {1,2}, position=(0.1,0.1))

c5 = SoftConstraint([C,E],penalty_if_same(3),"c5")
c6 = SoftConstraint([D,E],penalty_if_same(2),"c6")
scsp2 = CSP("scspl1”, {A,B,C,D,E}, [c1,c2,c3,c4,c5,c6])

4.6.1 Branch-and-bound Search
Here we specialize the branch-and-bound algorithm (Section[3.3]on page [65) to

solve soft CSP problems.

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

60
61
62
63
64
65

66
67
68

69

70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98

99
100
101
102

4.6. Discrete Optimization 107

cspSoft.py — (continued)

from display import Displayable
import math

class DF_branch_and_bound_opt(Displayable):
"""returns a branch and bound searcher for a problem.
An optimal assignment with cost less than bound can be found by calling
search()
def __init__(self, csp, bound=math.inf):
creates a searcher than can be used with search() to find an
optimal path.
bound gives the initial bound. By default this is infinite -
meaning there
is no initial pruning due to depth bound

nnn

nnn

self.csp = csp
self.best_asst = None
self.bound = bound

def optimize(self):

"""returns an optimal solution to a problem with cost less than
bound.

returns None if there is no solution with cost less than bound.”""
self.num_expanded=0
self.cbsearch({}, @, self.csp.constraints)
self.display(1,"Number of paths expanded:",self.num_expanded)
return self.best_asst, self.bound

def cbsearch(self, asst, cost, constraints):
"""finds the optimal solution that extends path and is less the
bound”""
self.display(2, "cbsearch:",asst,cost,constraints)
can_eval = [c for ¢ in constraints if c.can_evaluate(asst)]
rem_cons = [c for c in constraints if c not in can_eval]
newcost = cost + sum(c.value(asst) for c in can_eval)
self.display(2,"Evaluating:"”,can_eval,"cost: ", newcost)
if newcost < self.bound:
self.num_expanded += 1
if rem_cons==[]:
self.best_asst = asst
self.bound = newcost
self.display(1,"New best assignment:", asst,
else:
var = next(var for var in self.csp.variables if var not in
asst)
for val in var.domain:
self.cbsearch({var:val}|asst, newcost, rem_cons)

n

cost:"”,newcost)

bnb = DF_branch_and_bound_opt(scsp1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

108 4. Reasoning with Constraints

103 |# bnb.max_display_level=3 # show more detail
104 |# bnb.optimize()

Exercise 4.17 What happens of some costs are negative? (Does it still work?)
What if a value is added to all costs: does it change the optimum value, and does
it affect efficiency? Make the algorithm work so that negative costs can be in the
constraints. [Hint: make the smallest value be zero.]

Exercise 4.18 Change the stochastic-local search algorithms to work for soft con-
straints. Hint: Instead of the number of constraints violated, consider how much a
change in a variable affects the objective function. Instead of returning a solution,
return the best assignment found.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

27
28
29

Chapter 5

Propositions and Inference

5.1 Representing Knowledge Bases

A clause consists of a head (an atom) and a body. A body is represented as a list
of atoms. Atoms are represented as strings, or any type that can be converted
to strings.

logicProblem.py — Representations Logics

class Clause(object):
"""A definite clause""”

def __init__(self,head,body=[]):
"""clause with atom head and lost of atoms body
self.head=head
self.body = body

nnn

def __repr__(self):
"""returns the string representation of a clause.
if self.body:
return f"{self.head} <- {' & '.join(str(a) for a in
self.body)}.”
else:
return f"{self.head}."

An askable atom can be asked of the user. The user can respond in English or

“"__r

French or just with a “y”.

logicProblem.py — (continued)

class Askable(object):
"""An askable atom

nnn

109

30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46

47
48
49
50
51

52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

110 5. Propositions and Inference

def __init__(self,atom):
"""clause with atom head and lost of atoms body
self.atom=atom

nnn

def __str__(self):
"""returns the string representation of a clause.
return f"askable {self.atom}.”

nnn

def yes(ans):
"""returns true if the answer is yes in some form

return ans.lower() in ['yes', 'oui', 'y'] # bilingual

nnn

A knowledge base is a list of clauses and askables. To make top-down inference
faster, this creates an atom_to_clause dictionary that maps each atom into the
set of clauses with that atom in the head.

logicProblem.py — (continued)

from display import Displayable

class KB(Displayable):
"""A knowledge base consists of a set of clauses.
This also creates a dictionary to give fast access to the clauses with
an atom in head.
def __init__(self, statements=[]):
self.statements = statements
self.clauses = [c for c in statements if isinstance(c, Clause)]
self.askables = [c.atom for c in statements if isinstance(c,
Askable)]
self.atom_to_clauses = {} # dictionary giving clauses with atom as
head
for c in self.clauses:
self.add_clause(c)

def add_clause(self, c):
if c.head in self.atom_to_clauses:
self.atom_to_clauses[c.head].append(c)
else:
self.atom_to_clauses[c.head] = [c]

def clauses_for_atom(self,a):
"""returns list of clauses with atom a as the head"""
if a in self.atom_to_clauses:
return self.atom_to_clauses[al]
else:
return []

def __str__(self):
"""returns a string representation of this knowledge base.

nnn

return '\n'.join([str(c) for c in self.statements])

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

74
75
76
77
78

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111
112
113
114

5.1. Representing Knowledge Bases 111

Here is a trivial example (I think therefore I am) used in the unit tests:

logicProblem.py — (continued)

triv_KB = KB([
Clause('i_am', ['i_think']),
Clause('i_think"),
Clause('i_smell', ['i_exist'])

D

Here is a representation of the electrical domain of the textbook:

logicProblem.py — (continued)

elect = KB([
Clause('light_11"),
Clause('light_12"),
Clause('ok_11"),
Clause('ok_12"),
Clause('ok_cb1"),
Clause('ok_cb2"),
Clause('live_outside'),
Clause('live_11', ['live_w0']),
Clause('live_w@', ['up_s2','live_wl']),
Clause('live_w@', ['down_s2','live_w2']),
Clause('live_wl', ['up_s1', 'live_w3'l),
Clause('live_w2', ['down_s1','live_w3' 1),
Clause('live_12', ['live_w4']),
Clause('live_w4', ['up_s3', 'live_w3' 1]),
Clause('live_p_1', ['live_w3']),
Clause('live_w3', ['live_w5', 'ok_cb1']),
Clause('live_p_2', ['live_w6']),
Clause('live_w6', ['live_w5', 'ok_cb2'1),
Clause('live_w5', ['live_outside']),
Clause('lit_11', ['light_11', 'live_11', 'ok_11'1),
Clause('lit_12', ['light_12', 'live_12', 'ok_12'1),
Askable('up_s1'),
Askable('down_s1'),
Askable('up_s2'),
Askable('down_s2'),
Askable('up_s3'),
Askable('down_s2")
D

print(kb)

The following knowledge base is false in the intended interpretation. One of
the clauses is wrong; can you see which one? We will show how to debug it.

logicProblem.py — (continued)
elect_bug = KB([

Clause('light_12"),

Clause('ok_11"),

Clause('ok_12"),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

112 5. Propositions and Inference

115 Clause('ok_cb1'),

116 Clause('ok_ch2"),

117 Clause('live_outside'),

118 Clause('live_p_2', ['live_w6']),

119 Clause('live_w6', ['live_w5', 'ok_cbh2']),
120 Clause('light_11"),

121 Clause('live_w5', ['live_outside']),

122 Clause('lit_11"', ['light_11', 'live_11', 'ok_11'1]),
123 Clause('lit_12', ['light_12', 'live_12', 'ok_12'1),
124 Clause('live_11', ['live_w0@']),

125 Clause('live_w@', ['up_s2','live_wl']),
126 Clause('live_w@', ['down_s2', 'live_w2']),
127 Clause('live_wl', ['up_s3', 'live_w3']),
128 Clause('live_w2', ['down_s1','live_w3' 1),
129 Clause('live_12', ['live_w4']),

130 Clause('live_w4', ['up_s3', 'live_w3' 1),
131 Clause('live_p_1', ['live_w3']D),

132 Clause('live_w3', ['live_w5', 'ok_cb1']),
133 Askable('up_s1'),

134 Askable('down_s1'"),

135 Askable('up_s2'),

136 Clause('light_12"),

137 Clause('ok_11"),

138 Clause('light_12"),

139 Clause('ok_11"),

140 Clause('ok_12"),

141 Clause('ok_cb1"),

142 Clause('ok_cb2'),

143 Clause('live_outside'),

144 Clause('live_p_2', ['live_w6']),

145 Clause('live_w6', ['live_w5', 'ok_cb2']),
146 Clause('ok_12"),

147 Clause('ok_cb1"),

148 Clause('ok_ch2"),

149 Clause('live_outside'),

150 Clause('live_p_2', ['live_w6']),

151 Clause('live_w6', ['live_w5', 'ok_cbh2']),
152 Askable('down_s2'),

153 Askable('up_s3'),

154 Askable('down_s2")

155 iD)

156

157 |# print(kb)

5.2 Bottom-up Proofs (with askables)

fixed_point{kb} computes the fixed point of the knowledge base kb.

logicBottomUp.py — Bottom-up Proof Procedure for Definite Clauses

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

30
31
32
33
34
35
36
37
38
39
40

5.2. Bottom-up Proofs (with askables) 113

from logicProblem import yes

def fixed_point(kb):
"""Returns the fixed point of knowledge base kb.
fp = ask_askables(kb)
added = True
while added:
added = False # added is true when an atom was added to fp this
iteration
for ¢ in kb.clauses:
if c.head not in fp and all(b in fp for b in c.body):
fp.add(c.head)
added = True
kb.display(2,c.head, "added to fp due to clause”,c)
return fp

def ask_askables(kb):
return {at for at in kb.askables if yes(input("Is "+at+" true? "))}

The following provides a trivial unit test, by default using the knowledge base
triv_KB:

logicBottomUp.py — (continued)

from logicProblem import triv_KB

def test(kb=triv_KB, fixedpt = {'i_am','i_think'}):
fp = fixed_point(kb)
assert fp == fixedpt, f"kb gave result {fp}”
print(”"Passed unit test"”)

if __name__ == "__main_
test()

"n,

from logicProblem import elect
elect.max_display_level=3 # give detailed trace
fixed_point(elect)

Exercise 5.1 Itis not very user-friendly to ask all of the askables up-front. Imple-
ment ask-the-user so that questions are only asked if useful, and are not re-asked.
For example, if there is a clause 1 <— a A b A c Ad A e, where ¢ and e are askable, c
and e only need to be asked if a, b, d are all in fp and they have not been asked be-
fore. Askable e only needs to be asked if the user says “yes” to c. Askable c doesn’t
need to be asked if the user previously replied “no” to e, unless it is needed for
some other clause.

This form of ask-the-user can ask a different set of questions than the top-
down interpreter that asks questions when encountered. Give an example where
they ask different questions (neither set of questions asked is a subset of the other).

Exercise 5.2 This algorithm runs in time O(n?), where n is the number of clauses,
for a bounded number of elements in the body; each iteration goes through each
of the clauses, and in the worst case, it will do an iteration for each clause. It is
possible to implement this in time O(n) time by creating an index that maps an

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33

114 5. Propositions and Inference

atom to the set of clauses with that atom in the body. Implement this. What is its
complexity as a function of n and b, the maximum number of atoms in the body of
a clause?

Exercise 5.3 Itis possible to be more efficient (in terms of the number of elements
in a body) than the method in the previous question by noticing that each element
of the body of clause only needs to be checked once. For example, the clause
a < b AcAd, needs only be considered when b is added to fp. Once b is added
to fp, if c is already in fp, we know that a can be added as soon as d is added.
Implement this. What is its complexity as a function of n and b, the maximum
number of atoms in the body of a clause?

5.3 Top-down Proofs (with askables)

The following implements the top-down proof procedure for propositional
definite clauses, as described in Section 5.3.2 and Figure 5.4 of Poole and Mack-
worth| [2023]. It implements “choose” by looping over the alternatives (using
Python’s any) and returning true if any choice leads to a proof.

prove(kb, goal) is used to prove goal from a knowledge base, kb, where a goal
is a list of atoms. It returns True if kb = goal. The indent is used when displaying
the code (and doesn’t need to be called initially with a non-default value).

logicTopDown.py — Top-down Proof Procedure for Definite Clauses

from logicProblem import yes

def prove(kb, ans_body, indent=""):
"""returns True if kb |- ans_body
ans_body is a list of atoms to be proved
kb.display(2,indent, 'yes <-',' & '.join(ans_body))
if ans_body:
selected = ans_body[@] # select first atom from ans_body
if selected in kb.askables:
return (yes(input("Is "+selected+" true? "))
and prove(kb,ans_body[1:],indent+" "))
else:
return any(prove(kb,cl.body+ans_body[1:],indent+" ")
for cl in kb.clauses_for_atom(selected))
else:
return True # empty body is true

The following provides a simple unit test that is hard wired for triv_KB:

logicTopDown.py — (continued)

from logicProblem import triv_KB

def test():
al = prove(triv_KB,['i_am'])
assert al, f"triv_KB proving i_am gave {al1}"
a2 = prove(triv_KB,['i_smell'])

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

34
35
36
37
38
39
40
41
42

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

5.4. Debugging and Explanation 115

assert not a2, f"triv_KB proving i_smell gave {a2}"
print(”"Passed unit tests”)

n

if __name__ == "__main_
test()

try

from logicProblem import elect

elect.max_display_level=3 # give detailed trace

prove(elect,['live_w6'])

prove(elect,['1it_11'1)

",

Exercise 5.4 This code can re-ask a question multiple times. Implement this code
so that it only asks a question once and remembers the answer. Also implement
a function to forget the answers, which is useful if someone given an incorrect
response.

Exercise 5.5 What search method is this using? Implement the search interface
so that it can use A* or other searching methods. Define an admissible heuristic
that is not always 0.

5.4 Debugging and Explanation

Here we modify the top-down procedure to build a proof tree than can be
traversed for explanation and debugging.

prove_atom(kb,atom) returns a proof for atom from a knowledge base kb,
where a proof is a pair of the atom and the proofs for the elements of the body of
the clause used to prove the atom. prove_body (kb,body) returns a list of proofs
for list body from a knowledge base, kb. The indent is used when displaying the
code (and doesn’t need to have a non-default value).

logicExplain.py — Explaining Proof Procedure for Definite Clauses

from logicProblem import yes # for asking the user

def prove_atom(kb, atom, indent=""):
"""returns a pair (atom,proofs) where proofs is the list of proofs
of the elements of a body of a clause used to prove atom.
kb.display(2,indent, 'proving',atom)
if atom in kb.askables:
if yes(input("Is "+atomt+" true? ")):
return (atom,"answered")
else:
return "fail”
else:
for cl in kb.clauses_for_atom(atom):
kb.display(2,indent,"trying”,atom, '<-"',"' & '.join(cl.body))
pr_body = prove_body(kb, cl.body, indent)
if pr_body != "fail":
return (atom, pr_body)
return "fail”

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

30
31
32
33
34
35
36
37
38
39
40
41
42

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64

116 5. Propositions and Inference

def prove_body(kb, ans_body, indent=""):
"""returns proof tree if kb |- ans_body or "fail” if there is no proof
ans_body is a list of atoms in a body to be proved
proofs = []
for atom in ans_body:
proof_at = prove_atom(kb, atom, indent+" ")

if proof_at == "fail":
return "fail” # fail if any proof fails
else:

proofs.append(proof_at)
return proofs

The following provides a simple unit test that is hard wired for triv_KB:

logicExplain.py — (continued)

from logicProblem import triv_KB
def test():
al = prove_atom(triv_KB, 'i_am")
assert al, f"triv_KB proving i_am gave {al}"
a2 = prove_atom(triv_KB, 'i_smell"')
assert a2=="fail"”, "triv_KB proving i_smell gave {a2}"
print("Passed unit tests")

n,

if __name__ == "__main__
test()

try

from logicProblem import elect, elect_bug

elect.max_display_level=3 # give detailed trace
prove_atom(elect, 'live_w6')

prove_atom(elect, 'lit_11")

The interact(kb) provides an interactive interface to explore proofs for
knowledge base kb. The user can ask to prove atoms and can ask how an atom
was proved.

To ask how, there must be a current atom for which there is a proof. This
starts as the atom asked. When the user asks “how n” the current atom be-
comes the n-th element of the body of the clause used to prove the (previous)
current atom. The command “up” makes the current atom the atom in the head
of the rule containing the (previous) current atom. Thus “how n” moves down
the proof tree and “up” moves up the proof tree, allowing the user to explore
the full proof.

logicExplain.py — (continued)

helptext = """Commands are:

ask atom ask is there is a proof for atom (atom should not be in quotes)
how show the clause that was used to prove atom

how n show the clause used to prove the nth element of the body

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

5.4. Debugging and Explanation 117
up go back up proof tree to explore other parts of the proof tree
kb print the knowledge base

quit quit this interaction (and go back to Python)

help print this text

nnn

def interact(kb):
going = True
ups = []1 # stack for going up
proof="fail"” # there is no proof to start
while going:
inp = input(”logicExplain: ")
inps = inp.split(" ")
try:
command = inps[0]
if command == "quit":
going = False
elif command == "ask":
proof = prove_atom(kb, inps[1])
if proof == "fail”:
print(”"fail”)
else:
print("yes")
elif command == "how":
if proof=="fail":
print("there is no proof”)
elif len(inps)==1:
print_rule(proof)
else:
try:
ups.append(proof’)
proof = proof[1][int(inps[1])] #nth
print_rule(proof)
except:

argument of rule

print('In "how n", n must be a number between @
and',len(proof[1])-1,"inclusive.")

n n

elif command == "up"”:
if ups:
proof = ups.pop()
else:
print(”"No rule to go up to.")
print_rule(proof)
elif command == "kb":
print(kb)
elif command == "help”:
print(helptext)
else:
print("unknown command:", inp)
print("use help for help")
except:

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

118

print(”"unknown command:", inp)
print("use help for help”)

def print_rule(proof):
(head,body) = proof
if body == "answered":
print(head, "was answered yes")
elif body == []:
print(head,"”is a fact")

else:
print(head, "<-")
for i,a in enumerate(body):
print(i,":",al0@])
try

interact(elect)

Which clause is wrong in elect_bug? Try:
interact(elect_bug)

logicExplain: ask lit_11

5. Propositions and Inference

The following shows an interaction for the knowledge base elect:

>>> interact(elect)
logicExplain: ask 1it_11
Is up_s2 true? no

Is down_s2 true? yes

Is down_s1 true? yes
yes

logicExplain: how

lit_11 <-

0 : light_11
1 : live_l1

2 : ok_11
logicExplain:
live_11 <-

0 : live_wo
logicExplain:
live_wo <-

@ : down_s2

1 : live_w2
logicExplain: how @
down_s2 was answered yes
logicExplain: up

live_wo <-

0 : down_s2

1 : live_w2
logicExplain: how 1
live_w2 <-

how 1

how @

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

32
33
34
35

5.5. Assumables 119

0 : down_s1

1 : live_w3
logicExplain: quit
>>>

Exercise 5.6 The above code only ever explores one proof — the first proof found.
Change the code to enumerate the proof trees (by returning a list of all proof trees,
or, preferably, using yield). Add the command “retry” to the user interface to try
another proof.

5.5 Assumables

Atom a can be made assumable by including Assumable(a) in the knowledge
base. A knowledge base that can include assumables is declared with KBA.

logicAssumables.py — Definite clauses with assumables

from logicProblem import Clause, Askable, KB, yes

class Assumable(object):
"""An askable atom"""

def __init__(self,atom):
"""clause with atom head and lost of atoms body
self.atom = atom

nnn

def __str__(self):
"""returns the string representation of a clause.

nnn

return "assumable " + self.atom + "."

class KBA(KB):
"""A knowledge base that can include assumables
def __init__(self,statements):
self.assumables = [c.atom for c in statements if isinstance(c,
Assumable)]
KB.__init__(self,statements)

nnn

The top-down Horn clause interpreter, prove_all_ass returns a list of the sets
of assumables that imply ans_body. This list will contain all of the minimal sets
of assumables, but can also find non-minimal sets, and repeated sets, if they
can be generated with separate proofs. The set assumed is the set of assumables
already assumed.

logicAssumables.py — (continued)

def prove_all_ass(self, ans_body, assumed=set()):
"""returns a list of sets of assumables that extends assumed
to imply ans_body from self.
ans_body is a list of atoms (it is the body of the answer clause).
assumed is a set of assumables already assumed

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

36
37
38
39
40
41
42
43
44
45
46
47
48
49

50

51
52
53
54
55
56

58
59
60
61
62
63
64
65
66
67
68

69
70

120 5. Propositions and Inference

nnn

if ans_body:
selected = ans_body[0@] # select first atom from ans_body
if selected in self.askables:
if yes(input("Is "+selected+" true? ")):
return self.prove_all_ass(ans_body[1:],assumed)
else:
return [1 # no answers
elif selected in self.assumables:
return self.prove_all_ass(ans_body[1:],assumed|{selected})
else:
return [ass
for cl in self.clauses_for_atom(selected)
for ass in
self.prove_all_ass(cl.body+ans_body[1:],assumed)
1 # union of answers for each clause with
head=selected
else: # empty body
return [assumed] # one answer

def conflicts(self):
"""returns a list of minimal conflicts
return minsets(self.prove_all_ass(['false']))

nnn

Given a list of sets, minsets returns a list of the minimal sets in the list. For

example, minsets([{2,3,4},{2,3},{6,2,3},{2,3},{2,4,5}]) returns [{2,3}, {2,4,5}].

logicAssumables.py — (continued)

def minsets(ls):
"""1s is a list of sets
returns a list of minimal sets in 1ls

nnn

ans = [] # elements known to be minimal
for c in ls:
if not any(ci<c for c1 in 1s) and not any(cl <= c for c1 in ans):
ans.append(c)
return ans

minsets([{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 33}, {2, 4, 5}D)

Warning: minsets works for a list of sets or for a set of (frozen) sets, but it does
not work for a generator of sets (because variable 1s is referenced in the loop).
For example, try to predict and then test:

minsets(e for e in [{2, 3, 43}, {2, 33}, {6, 2, 3}, {2, 33}, {2, 4, 53D

The diagnoses can be constructed from the (minimal) conflicts as follows.
This also works if there are non-minimal conflicts, but is not as efficient.

logicAssumables.py — (continued)

def diagnoses(cons):
"""cons is a list of (minimal) conflicts.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

71
72
73
74
75
76
77

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

5.5. Assumables 121

nnn

returns a list of diagnoses.

if cons == []:
return [set()]
else:
return minsets([({e}|d) # | is set union
for e in cons[@]
for d in diagnoses(cons[1:1)])
Test cases:

logicAssumables.py — (continued)

electa = KBA(L
Clause('light_11"),
Clause('light_12"),
Assumable('ok_11"),
Assumable('ok_12"),
Assumable('ok_s1'),
Assumable('ok_s2'),
Assumable('ok_s3'),
Assumable('ok_cb1'),
Assumable('ok_cb2'),
Assumable('live_outside'),
Clause('live_11', ['live_w@']),
Clause('live_w@', ['up_s2','ok_s2',6'live_wl1']),
Clause('live_w@', ['down_s2',6 'ok_s2','live_w2']),
Clause('live_wl', ['up_s1', 'ok_s1', 'live_w3']),
Clause('live_w2', ['down_s1', 'ok_s1',6'live_w3' 1),
Clause('live_12', ['live_w4']),
Clause('live_w4', ['up_s3', 'ok_s3', 'live_w3' 1),
Clause('live_p_1', ['live_w3'1),
Clause('live_w3', ['live_w5', 'ok_cbh1']),
Clause('live_p_2', ['live_w6']),
Clause('live_w6', ['live_w5', 'ok_cb2']),
Clause('live_w5', ['live_outside']),
Clause('lit_11', ['light_11', 'live_11', 'ok_11'1),
Clause('lit_12', ['light_12', 'live_12', 'ok_12'1),
Askable('up_s1'),
Askable('down_s1'),
Askable('up_s2'),
Askable('down_s2'),
Askable('up_s3'),
Askable('down_s2'),
Askable('dark_11"),
Askable('dark_12"),
Clause('false', ['dark_11', 'lit_11'1),
Clause('false', ['dark_12', 'lit_12'1)
D

electa.prove_all_ass(['false'])

cs=electa.conflicts()

print(cs)

diagnoses(cs) # diagnoses from conflicts

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34

35
36

122 5. Propositions and Inference

Exercise 5.7 To implement a version of conflicts that never generates non-
minimal conflicts, modify prove_all_ass to implement iterative deepening on the
number of assumables used in a proof, and prune any set of assumables that is a
superset of a conflict.

Exercise 5.8 Implement explanations(self,body), where body is a list of atoms,
that returns a list of the minimal explanations of the body. This does not require
modification of prove_all_ass.

Exercise 5.9 Implement explanations, as in the previous question, so that it
never generates non-minimal explanations. Hint: modify prove_all_ass to im-
plement iterative deepening on the number of assumptions, generating conflicts
and explanations together, and pruning as early as possible.

5.6 Negation-as-failure

The negation of an atom a is written as Not (a) in a body.

logicNegation.py — Propositional negation-as-failure

from logicProblem import KB, Clause, Askable, yes

class Not(object):
def __init__(self, atom):
self.theatom = atom

def atom(self):
return self.theatom

def __repr__(self):
return f"Not({self.theatom})”

Prove with negation-as-failure (prove_naf) is like prove, but with the extra case
to cover Not:

logicNegation.py — (continued)

def prove_naf(kb, ans_body, indent=""):
""" prove with negation-as-failure and askables
returns True if kb |- ans_body
ans_body is a list of atoms to be proved
kb.display(2,indent, 'yes <-',' & '.join(str(e) for e in ans_body))
if ans_body:
selected = ans_body[0] # select first atom from ans_body
if isinstance(selected, Not):
kb.display(2,indent,f"proving {selected.atom()}")
if prove_naf(kb, [selected.atom()], indent):
kb.display(2,indent,f"{selected.atom()} succeeded so
Not ({selected.atom()}) fails")
return False
else:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

37

38
39
40
41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69

70
71
72
73
74
75
76
77
78
79

5.6. Negation-as-failure 123

kb.display(2,indent,f"{selected.atom()} fails so
Not({selected.atom()}) succeeds"”)
return prove_naf(kb, ans_body[1:],indent+" ")
if selected in kb.askables:
return (yes(input("Is "+selected+" true? "))
and prove_naf(kb,ans_body[1:],indent+" "))
else:
return any(prove_naf(kb,cl.body+ans_body[1:],indent+" ")
for cl in kb.clauses_for_atom(selected))
else:
return True # empty body is true

Test cases:

logicNegation.py — (continued)

triv_KB_naf = KB([
Clause('i_am', ['i_think']),
Clause('i_think"),
Clause('i_smell', ['i_am', Not('dead')]),
Clause('i_bad', ['i_am', Not('i_think')1)
D

triv_KB_naf.max_display_level = 4

def test():
al = prove_naf(triv_KB_naf,['i_smell'])
assert al, f"triv_KB_naf failed to prove i_smell; gave {al}"
a2 = prove_naf(triv_KB_naf,['i_bad'])
assert not a2, f"triv_KB_naf wrongly proved i_bad; gave {a2}"
print(”"Passed unit tests”)

if __name__ == "__main__
test()

n,

Default reasoning about beaches at resorts (Example 5.28 of Poole and Mack-
worth! [2023])):

logicNegation.py — (continued)

beach_KB = KB([
Clause('away_from_beach', [Not('on_beach')]),
Clause('beach_access', ['on_beach', Not('ab_beach_access')]),
Clause('swim_at_beach', ['beach_access', Not('ab_swim_at_beach')1),
Clause('ab_swim_at_beach', ['enclosed_bay', 'big_city',
Not('ab_no_swimming_near_city')]),
Clause('ab_no_swimming_near_city', ['in_BC', Not('ab_BC_beaches')])

D

prove_naf(beach_KB, ['away_from_beach'])
prove_naf (beach_KB, ['beach_access'])
beach_KB.add_clause(Clause('on_beach',[1))
prove_naf (beach_KB, ['away_from_beach'])
prove_naf (beach_KB, ['swim_at_beach'])
beach_KB.add_clause(Clause('enclosed_bay',[]))
prove_naf (beach_KB, ['swim_at_beach'])

H o H O H HH

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

80
81
82
83

124

beach_KB.add_clause(Clause('big_city',[1))
prove_naf(beach_KB, ['swim_at_beach'])
beach_KB.add_clause(Clause('in_BC',[]))
prove_naf(beach_KB, ['swim_at_beach'])

https://aipython.org

Version 0.9.15

5. Propositions and Inference

December 23, 2024

https://aipython.org

11
12
13
14
15
16

17
18
19
20

Chapter 6

Deterministic Planning

6.1 Representing Actions and Planning Prob-
lems
The STRIPS representation of an action consists of:

¢ the name of the action

¢ preconditions: a dictionary of feature:value pairs that specifies that the
feature must have this value for the action to be possible

¢ effects: a dictionary of feature:value pairs that are made true by this action.
In particular, a feature in the dictionary has the corresponding value (and
not its previous value) after the action, and a feature not in the dictionary
keeps its old value.

e a cost for the action

stripsProblem.py — STRIPS Representations of Actions
class Strips(object):
def __init__(self, name, preconds, effects, cost=1):
defines the STRIPS representation for an action:
* name is the name of the action
* preconds, the preconditions, is feature:value dictionary that
must hold

for the action to be carried out
* effects is a feature:value map that this action makes
true. The action changes the value of any feature specified
here, and leaves other features unchanged.

125

21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51

126

* cost is the cost of the action

nnn

self.name = name

self.preconds = preconds

self.effects = effects
self.cost = cost

def __repr__(self):

return self.name

A STRIPS domain consists of:

6. Deterministic Planning

* A dictionary feature_domain_dict that maps each feature into a set of
possible values for the feature. This is needed for the CSP planner.

* A set of actions, each represented using the Strips class.

class STRIPS_domain(object):

stripsProblem.py — (continued)

def __init__(self, feature_domain_dict, actions):

"""Problem domain

feature_domain_dict is a feature:domain dictionary,

mapping each feature to its domain

actions

nnn

self.feature_domain_dict = feature_domain_dict

self.actions = actions

A planning problem consists of a planning domain, an initial state, and a
goal. The goal does not need to fully specify the final state.

class Planning_problem(object):

stripsProblem.py — (continued)

def __init__(self, prob_domain, initial_state, goal):

nnn

planning problem consists of

a
* a planning domain
* the initial state
* a goal

nnn

self.prob_domain = prob_domain
self.initial_state = initial_state

self.goal = goal

6.1.1 Robot Delivery Domain

The following specifies the robot delivery domain of Section 6.1, shown in Fig-

ure

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

6.1. Representing Actions and Planning Problems 127

Coffee
Shop
(cs) \ Sam's
Office
(off)
Mail Lab
Room [— | (lab)
(mr)
Features to describe states Actions
RLoc —Rob’s location mc —move clockwise
RHC - Rob has coffee mcc —move counterclockwise
SWC - Sam wants coffee puc - pickup coffee
MW —Mail is waiting dc —deliver coffee
RHM - Rob has mail pum —pickup mail

dm —deliver mail

Figure 6.1: Robot Delivery Domain

stripsProblem.py — (continued)

boolean = {False, True}
delivery_domain = STRIPS_domain(
{'RLoc':{'cs', 'off', 'lab', 'mr'}, 'RHC':boolean, 'SWC':boolean,
'"MW' :boolean, 'RHM':boolean}, #feature:values dictionary
{ Strips('mc_cs', {'RLoc':'cs'}, {'RLoc':'off'}),
Strips('mc_off', {'RLoc':'off'}, {'RLoc':'lab'}),
Strips('mc_lab', {'RLoc':'lab'}, {'RLoc':'mr'}),
Strips('mc_mr', {'RLoc':'mr'}, {'RLoc':'cs'}),
Strips('mcc_cs', {'RLoc':'cs'}, {'RLoc':'mr'}),
Strips('mcc_off', {'RLoc':'off'}, {'RLoc':'cs'}),
Strips('mcc_lab', {'RLoc':'lab'}, {'RLoc':'off'}),
Strips('mcc_mr', {'RLoc':'mr'}, {'RLoc':'lab'}),
Strips('puc', {'RLoc':'cs', 'RHC':False}, {'RHC':True}),
Strips('dc', {'RLoc':'off', 'RHC':True}, {'RHC':False, 'SWC':False}),
Strips('pum', {'RLoc':'mr','MW':True}, {'RHM':True, 'MW':False}),
Strips('dm', {'RLoc':'off', 'RHM':True}, {'RHM':False})
i)

stripsProblem.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

71
72
73
74
75
76
77
78
79
80
81
82

128

b move(b,c,a)

move(b,c,table)

problem@ =

probleml =

problem2 =

>

6. Deterministic Planning

Figure 6.2: Blocks world with two actions

Planning_problem(delivery_domain,

{'RLoc':"'lab', 'MW':True,

'RHM' :False},
{'RLoc"':"'off"'})
Planning_problem(delivery_domain,

{'RLoc':"'lab', 'MW':True,

'RHM' :False},
{'SWC':False})
Planning_problem(delivery_domain,

{'RLoc"':"'lab"', 'MW':True,

'RHM' :False},

{'SWC':False, 'MW':False,

6.1.2 Blocks World

The blocks world consist of blocks and a table. Each block can be on the table
or on another block. A block can only have one other block on top of it. Figure
[6.2] shows 3 states with some of the actions between them.

A state is defined by the two features:

"SWC'

"SWC'

"SWC!

'"RHM'

:True, 'RHC':False,

:True, 'RHC':False,

:True, 'RHC':False,

:False})

* on where on(x) = y when block x is on block or table y

e clear where clear(x) = True when block x has nothing on it.

There is one parameterized action

e move(x,y,z) move block x from y to z, where y and z could be a block or
the table.

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

111
112
113
114
115
116

118

6.1. Representing Actions and Planning Problems 129

To handle parameterized actions (which depend on the blocks involved), the
actions and the features are all strings, created for all the combinations of the
blocks. Note that we treat moving to a block separately from moving to the
table, because the blocks needs to be clear, but the table always has room for
another block.

stripsProblem.py — (continued)

blocks world
def move(x,y,z):
"""string for the 'move' action
return 'move_'+x+'_from_'+y+'_to_'+z
def on(x):
"""string for the 'on' feature
return x+'_is_on'
def clear(x):
"""string for the 'clear' feature
return 'clear_'+x
def create_blocks_world(blocks = {'a','b','c','d"'}):
blocks_and_table = blocks | {'table'}
stmap = {Strips(move(x,y,z),{on(x):y, clear(x):True, clear(z):True},
{on(x):z, clear(y):True, clear(z):False})
for x in blocks
for y in blocks_and_table
for z in blocks
if x!=y and y!=z and z!=x}
stmap.update({Strips(move(x,y, 'table'), {on(x):y, clear(x):True},
{on(x):'table', clear(y):True})
for x in blocks
for y in blocks
if x!=y})
feature_domain_dict = {on(x):blocks_and_table-{x} for x in blocks}
feature_domain_dict.update({clear(x):boolean for x in blocks_and_table})
return STRIPS_domain(feature_domain_dict, stmap)

nnn

nnn

nnn

The problem blocks1 is a classic example, with 3 blocks, and the goal consists of
two conditions. See Figure This example is challenging because you can’t
achieve one of the goals (using the minimum number of actions) and then the
other; whichever one you achieve first has to be undone to achieve the second.

stripsProblem.py — (continued)

blocksldom = create_blocks_world({'a','b','c'})

blocks1 = Planning_problem(blocksldom,
{on('a'):"'table', clear('a'):True,
on('b'):'c', clear('b'):True,
on('c'):"'table', clear('c'):False}, # initial state
{on('a'):'b"', on('c'):'a'}) #goal

The problem blocks2 is one to invert a tower of size 4.

stripsProblem.py — (continued)

‘blockdeom = create_blocks_world({'a','b','c','d'})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

119
120
121
122
123
124
125

127
128
129

130 6. Deterministic Planning

Figure 6.3: Blocks problem blocksl

tower4 = {clear('a'):True, on('a'):'b"',
clear('b'):False, on('b"'):'c",
clear('c'):False, on('c'):'d",
clear('d'):False, on('d"'):"'table'}
blocks2 = Planning_problem(blocks2dom,
tower4, # initial state
{on('d"):'c",on('c'):'b",on('b'):'a"'}) #goal

The problem blocks3 is to move the bottom block to the top of a tower of size 4.

stripsProblem.py — (continued)

blocks3 = Planning_problem(blocks2dom,
tower4, # initial state
{on('d"'):"'a', on('a'"):'b"', on('b'):'c'}) #goal

Exercise 6.1 Represent the problem of given a tower of 4 blocks (2 on b on ¢ on
d on table), the goal is to have a tower with the previous top block on the bottom
(b on c on d on a). Do not include the table in your goal (the goal does not care
whether a is on the table). [Before you run the program, estimate how many steps
it will take to solve this.] How many steps does an optimal planner take?

Exercise 6.2 Represent the domain so that on(x,y) is a Boolean feature that is
True when x is on y, Does the representation of the state need to include negative
on facts? Why or why not? (Note that this may depend on the planner; write your
answer with respect to particular planners.)

Exercise 6.3 It is possible to write the representation of the problem without
using clear, where clear(x) means nothing is on x. Change the definition of the
blocks world so that it does not use clear but uses on being false instead. Does this
work better for any of the planners?

6.2 Forward Planning

To run the demo, in folder ”aipython”, load
”stripsForwardPlanner.py”, and copy and paste the commented-
out example queries at the bottom of that file.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6.2. Forward Planning 131

In a forward planner, a node is a state. A state consists of an assignment, a
feature:value dictionary, where all features have a value. Multiple-path prun-
ing requires a hash function, and equality between states.

stripsForwardPlanner.py — Forward Planner with STRIPS actions

from searchProblem import Arc, Search_problem
from stripsProblem import Strips, STRIPS_domain

class State(object):

def __init__(self,assignment):
self.assignment = assignment
self.hash_value = None

def __hash__(self):
if self.hash_value is None:

self.hash_value = hash(frozenset(self.assignment.items()))

return self.hash_value

def __eq__(self,st):
return self.assignment == st.assignment

def __str__(self):
return str(self.assignment)

To define a search problem (page[41), you need to define the goal condition,
the start nodes, the neighbors, and (optionally) a heuristic function. Here zero
is the default heuristic function.

stripsForwardPlanner.py — (continued)

def zero(*args,**nargs):
"""always returns @"""
return 0

class Forward_STRIPS(Search_problem):
"""A search problem from a planning problem where:
* a node is a state
* the dynamics are specified by the STRIPS representation of actions
def __init__(self, planning_problem, heur=zero):
"""creates a forward search space from a planning problem.
heur(state,goal) is a heuristic function,
an underestimate of the cost from state to goal, where
both state and goals are feature:value dictionaries.
self.prob_domain = planning_problem.prob_domain
self.initial_state = State(planning_problem.initial_state)
self.goal = planning_problem.goal
self.heur = heur

def is_goal(self, state):
"""is True if node is a goal.

Every goal feature has the same value in the state and the goal."""
return all(state.assignment[propl==self.goallprop]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

52
53
54
55
56
57
58
59
60

61
62
63
64
65
66

67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82

84
85
86
87
88
89

90
91
92

132

for prop in se

def start_node(self):
"""returns start node

nnn

1f.goal)

return self.initial_state

def neighbors(self,state):

nnn

returns neighbors of state in this problem

6. Deterministic Planning

nnn

return [Arc(state, self.effect(act,state.assignment), act.cost,

act)

for act in self.prob_domain.actions

if self.possible(act,state.assignment)]

def possible(self,act,state_asst):
"""True if act is possible in state.
act is possible if all of its preconditions have the same value in

the state""”

return all(state_asst[pre] == act.preconds[pre]

for pre in act

.preconds)

def effect(self,act,state_asst):

nnn

state_asst

Python 3.9: return state_asst | act.effects

new_state_asst = state_asst.copy()
new_state_asst.update(act.effects)
return State(new_state_asst)

def heuristic(self,state):

nnns

nnn

in the forward planner a node is a state.

the heuristic is an (under)estimate of the cost
of going from the state to the top-level goal.

nnn

return self.heur(state.assignment, self.goal)

Here are some test cases to try.

stripsForwardPlanner.py — (continued)

returns the state that is the effect of doing act given

from searchBranchAndBound import DF_branch_and_bound

from searchMPP import SearcherM
import stripsProblem

PP

SearcherMPP(Forward_STRIPS(stripsProblem.problem1)).search() #A* with MPP
DF_branch_and_bound(Forward_STRIPS(stripsProblem.problem1),10).search()

#B&B
To find more than one plan:

s1 = SearcherMPP(Forward_STRIPS(stripsProblem.probleml)) #Ax*

sl.search() #find another pla

https://aipython.org

n

Version 0.9.15

December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

6.2. Forward Planning 133

6.2.1 Defining Heuristics for a Planner

Each planning domain requires its own heuristics. If you change the actions,
you will need to reconsider the heuristic function, as there might then be a
lower-cost path, which might make the heuristic non-admissible.

Here is an example of defining heuristics for the coffee delivery planning
domain.

First define the distance between two locations, which is used for the heuris-
tics.

stripsHeuristic.py — Planner with Heuristic Function

def dist(loc1, loc2):
"""returns the distance from location locl to loc2

nnn

if locl==loc2:
return @

if {loc1,loc2} in [{'cs','lab'},{'mr", 'off'}]:
return 2

else:
return 1

Note that the current state is a complete description; there is a value for
every feature. However the goal need not be complete; it does not need to
define a value for every feature. Before checking the value for a feature in the
goal, a heuristic needs to define whether the feature is defined in the goal.

stripsHeuristic.py — (continued)

def hl(state,goal):
""" the distance to the goal location, if there is one
if 'RLoc' in goal:
return dist(state['RLoc'], goal['RLoc'])
else:
return 0

nnn

def h2(state,goal):
""" the distance to the coffee shop plus getting coffee and delivering
it
if the robot needs to get coffee

nnn

if ('SWC' in goal and goall['SWC']==False
and state['SWC'I==True
and state['RHC'J==False):
return dist(state['RLoc'],'cs')+3
else:
return 0

The maximum of the values of a set of admissible heuristics is also an admis-
sible heuristic. The function maxh takes a number of heuristic functions as ar-
guments, and returns a new heuristic function that takes the maximum of the
values of the heuristics. For example, h1 and h2 are heuristic functions and so
maxh(h1,h2) is also. maxh can take an arbitrary number of arguments.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

39
40

41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

134 6. Deterministic Planning

stripsHeuristic.py — (continued)

def maxh(*heuristics):
"""Returns a new heuristic function that is the maximum of the
functions in heuristics.
heuristics is the list of arguments which must be heuristic functions.
return lambda state,goal: max(h(state,goal) for h in heuristics)
def newh(state,goal):
return max(h(state,goal) for h in heuristics)
return newh

The following runs the example with and without the heuristic.

stripsHeuristic.py — (continued)

##HHH# Forward Planner #iHH#

from searchMPP import SearcherMPP

from stripsForwardPlanner import Forward_STRIPS
import stripsProblem

def test_forward_heuristic(thisproblem=stripsProblem.probleml):
print("\nx*x*xxx FORWARD NO HEURISTIC")
print(SearcherMPP(Forward_STRIPS(thisproblem)).search())

print("\n*xxx* FORWARD WITH HEURISTIC h1")
print(SearcherMPP(Forward_STRIPS(thisproblem,h1)).search())

print("\n*xxx% FORWARD WITH HEURISTIC h2")
print(SearcherMPP(Forward_STRIPS(thisproblem,h2)).search())

print("\n*xxx* FORWARD WITH HEURISTICs h1 and h2")
print(SearcherMPP(Forward_STRIPS(thisproblem,maxh(h1,h2))).search())

n,

if __name__ == "__main_

test_forward_heuristic()

Exercise 6.4 For more than one start-state/goal combination, test the forward
planner with a heuristic function of just h1, with just h2 and with both. Explain
why each one prunes or doesn’t prune the search space.

Exercise 6.5 Create a better heuristic than maxh(h1,h2). Try it for a number of
different problems. In particular, try and include the following costs:
i) h3is like h2 but also takes into account the case when Rloc is in goal.

ii) h4 uses the distance to the mail room plus getting mail and delivering it if
the robot needs to get need to deliver mail.

iiif) h5 is for getting mail when goal is for the robot to have mail, and then getting
to the goal destination (if there is one).

Exercise 6.6 Create an admissible heuristic for the blocks world.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

6.3. Regression Planning 135

6.3 Regression Planning

To run the demo, in folder ”aipython”, load
”stripsRegressionPlanner.py”, and copy and paste the commented-
out example queries at the bottom of that file.

In a regression planner a node is a subgoal that need to be achieved. A
Subgoal consists of an assignment, a feature:value dictionary, which assigns
some — but typically not all — of the state features. It is hashable so that multiple
path pruning can work. The hash is only computed when necessary (and only
once).

stripsRegressionPlanner.py — Regression Planner with STRIPS actions

from searchProblem import Arc, Search_problem

class Subgoal(object):

def __init__(self,assignment):
self.assignment = assignment
self.hash_value = None

def __hash__(self):
if self.hash_value is None:

self.hash_value = hash(frozenset(self.assignment.items()))

return self.hash_value

def __eq__(self,st):
return self.assignment == st.assignment

def __str__(self):
return str(self.assignment)

A regression search has subgoals as nodes. The initial node is the top-level goal
of the planner. The goal for the search (when the search can stop) is a subgoal
that holds in the initial state.

stripsRegressionPlanner.py — (continued)

from stripsForwardPlanner import zero

class Regression_STRIPS(Search_problem):
"""A search problem where:
* a node is a goal to be achieved, represented by a set of propositions.
* the dynamics are specified by the STRIPS representation of actions

nnn

def __init__(self, planning_problem, heur=zero):
"""creates a regression search space from a planning problem.
heur(state,goal) is a heuristic function;
an underestimate of the cost from state to goal, where
both state and goals are feature:value dictionaries
self.prob_domain = planning_problem.prob_domain
self.top_goal = Subgoal(planning_problem.goal)
self.initial_state = planning_problem.initial_state

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74

75
76
77
78

79
80
81
82
83
84
85
86
87

136 6. Deterministic Planning

self.heur = heur

def is_goal(self, subgoal):
goal_asst = subgoal.assignment
return all(self.initial_state[gl==goal_asst[g]
for g in goal_asst)

def start_node(self):
"""the start node is the top-level goal”""
return self.top_goal

def neighbors(self,subgoal):
"""returns a list of the arcs for the neighbors of subgoal in this
problem”""
goal_asst = subgoal.assignment
return [Arc(subgoal, self.weakest_precond(act,goal_asst),
act.cost, act)
for act in self.prob_domain.actions
if self.possible(act,goal_asst)]

def possible(self,act,goal_asst):
"""True if act is possible to achieve goal_asst.

the action achieves an element of the effects and
the action doesn't delete something that needs to be achieved and
the preconditions are consistent with other subgoals that need to
be achieved
return (any(goal_asst[prop] == act.effects[prop]
for prop in act.effects if prop in goal_asst)
and all(goal_asst[prop] == act.effects[prop]
for prop in act.effects if prop in goal_asst)
and all(goal_asst[prop]l== act.preconds[prop]
for prop in act.preconds if prop not in act.effects
and prop in goal_asst)

)

def weakest_precond(self,act,goal_asst):
"""returns the subgoal that must be true so goal_asst holds after
act
should be: act.preconds | (goal_asst - act.effects)
new_asst = act.preconds.copy()
for g in goal_asst:
if g not in act.effects:
new_asst[g] = goal_asst[g]
return Subgoal (new_asst)

def heuristic(self,subgoal):

https://aipython.org Version 0.9.15 December 23, 2024

if subgoal is true in the initial state, a path has been found”"""

https://aipython.org

88
89

90
91

93
94
95
96
97

98

6.3. Regression Planning 137

nnns

in the regression planner a node is a subgoal.
the heuristic is an (under)estimate of the cost of going from the
initial state to subgoal.

nnn

return self.heur(self.initial_state, subgoal.assignment)

stripsRegressionPlanner.py — (continued)

from searchBranchAndBound import DF_branch_and_bound
from searchMPP import SearcherMPP
import stripsProblem

SearcherMPP(Regression_STRIPS(stripsProblem.problem1)).search() #A* with
MPP
#

DF_branch_and_bound(Regression_STRIPS(stripsProblem.probleml1),10).search()

#B&B

Exercise 6.7 Multiple path pruning could be used to prune more than the current
node. In particular, if the current node contains more conditions than a previously
visited node, it can be pruned. For example, if {a: True, b:False} hasbeen visited,
then any node that is a superset, e.g., {a:True, b:False, d:True}, need not be
expanded. If the simpler subgoal does not lead to a solution, the more complicated
one will not either. Implement this more severe pruning. (Hint: This may require
modifications to the searcher.)

Exercise 6.8 It is possible that, as knowledge of the domain, that some as-
signment of values to features can never be achieved. For example, the robot
cannot be holding mail when there is mail waiting (assuming it isn’t holding
mail initially). An assignment of values to (some of the) features is incompat-
ible if no possible (reachable) state can include that assignment. For example,
{'MW':True, 'RHM':True} is an incompatible assignment. This information may
be useful information for a planner; there is no point in trying to achieve these
together. Define a subclass of STRIPS_domain that can accept a list of incompatible
assignments. Modify the regression planner code to use such a list of incompatible
assignments. Give an example where the search space is smaller.

Exercise 6.9 After completing the previous exercise, design incompatible assign-
ments for the blocks world. (This can result in dramatic search improvements.)

6.3.1 Defining Heuristics for a Regression Planner

The regression planner can use the same heuristic function as the forward plan-
ner. However, just because a heuristic is useful for a forward planner does not
mean it is useful for a regression planner, and vice versa. you should experi-
ment with whether the same heuristic works well for both a regression planner
and a forward planner.

The following runs the same example as the forward planner with and
without the heuristic defined for the forward planner:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

69
70
71
72
73
74
75
76
77
78
79
80

11
12
13
14
15

16
17
18
19
20
21
22
23

138 6. Deterministic Planning

stripsHeuristic.py — (continued)

Regression Planner
from stripsRegressionPlanner import Regression_STRIPS

def test_regression_heuristic(thisproblem=stripsProblem.probleml):
print("\n*xxx* REGRESSION NO HEURISTIC")
print (SearcherMPP(Regression_STRIPS(thisproblem)).search())

print("\n*xxx* REGRESSION WITH HEURISTICs h1 and h2")

print(SearcherMPP(Regression_STRIPS(thisproblem,maxh(h1,h2))).search())
if __name__ == "__main_

test_regression_heuristic()

",

Exercise 6.10 Try the regression planner with a heuristic function of just h1 and
with just h2 (defined in Section [6.2.1). Explain how each one prunes or doesn’t
prune the search space.

Exercise 6.11 Create a heuristic that is better for regression planning than heuristic_fun
defined in Section

6.4 Planning as a CSP

To run the demo, in folder “aipython”, load “stripsCSPPlanner.py”,
and copy and paste the commented-out example queries at the bottom
of that file. This assumes Python 3.

The CSP planner assumes there is a single action at each step. This creates a
CSP that can use any of the CSP algorithms to solve (e.g., stochastic local search
or arc consistency with domain splitting).

It uses the same action representation as before; it does not consider fac-
tored actions (action features), or implement state constraints.

— stripsCSPPlanner.py — CSP planner where actions are represented using STRIPS

from cspProblem import Variable, CSP, Constraint

class CSP_from_STRIPS(CSP):
"""A CSP where:
* CSP variables are constructed for each feature and time, and each
action and time
* the dynamics are specified by the STRIPS representation of actions

nnn

def __init__(self, planning_problem, number_stages=2):
prob_domain = planning_problem.prob_domain
initial_state = planning_problem.initial_state
goal = planning_problem.goal
self.action_vars[t] is the action variable for time t

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

39
40
41
42

43
4
45
46
47
48
49
50

51
52
53
54
55
56
57
58

59

60
61

62
63
64
65

6.4. Planning as a CSP 139

self.action_vars = [Variable(f"Action{t}", prob_domain.actions)
for t in range(number_stages)]
feat_time_var[f][t] is the variable for feature f at time t
feat_time_var = {feat: [Variable(f"{feat}_{t}",dom)
for t in range(number_stages+1)]
for (feat,dom) in
prob_domain.feature_domain_dict.items()}

initial state constraints:
constraints = [Constraint([feat_time_var[feat][0]], is_(val),
f"{feat}[0]={vall}")
for (feat,val) in initial_state.items()]

goal constraints on the final state:
constraints += [Constraint([feat_time_var[feat][number_stages]],
is_(val),
f"{feat}[{number_stages}]={val}")
for (feat,val) in goal.items()]

precondition constraints:
constraints += [Constraint([feat_time_var[feat][t],
self.action_vars[t]],
if_(val,act),
f"{feat}[{t}]={val} if action[{t}]1={act}")
for act in prob_domain.actions
for (feat,val) in act.preconds.items()
for t in range(number_stages)]

effect constraints:
constraints += [Constraint([feat_time_var[feat][t+1],
self.action_vars[t]],
if_(val,act),
f"{feat}[{t+1}]1={val} if action[{t}]1={act}")
for act in prob_domain.actions
for feat,val in act.effects.items()
for t in range(number_stages)]
frame constraints:

constraints += [Constraint([feat_time_var[feat][t],
self.action_vars[t], feat_time_var[feat][t+1]1],
eq_if_not_in_({act for act in
prob_domain.actions
if feat in act.effects}),
f"{feat}[t]={feat}[{t+1}] if act not in
{set(act for act in prob_domain.actions
if feat in act.effects)}")
for feat in prob_domain.feature_domain_dict
for t in range(number_stages)]
variables = set(self.action_vars) | {feat_time_var[feat][t]
for feat in

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

66
67
68
69
70

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

140 6. Deterministic Planning

prob_domain. feature_domain_dict
for t in range(number_stages+1)}
CSP.__init__(self, "CSP_from_Strips"”, variables, constraints)

def extract_plan(self,soln):
return [soln[a] for a in self.action_vars]

The following methods return methods which can be applied to the particular
environment.

For example, is_(3) returns a function that when applied to 3, returns True
and when applied to any other value returns False. So is_(3) (3) returns True
and is_(3)(7) returns False.

Note that the underscore (_’) is part of the name; we use the convention
that a function with name ending in underscore returns a function. Com-
mented out is an alternative style to define is_ and if_; returning a function
defined by lambda is equivalent to returning the embedded function, except
that the embedded function has a name. The embedded function can also be
given a docstring.

stripsCSPPlanner.py — (continued)

def is_(val):
"""returns a function that is true when it is it applied to val.

nnn

#return lambda x: x == val
def is_fun(x):
return x == val
is_fun.__name__ = f"value_is_{val}"

return is_fun

def if_(vi1,v2):
"""if the second argument is v2, the first argument must be v1"""
#return lambda x1,x2: x1==v1 if x2==v2 else True
def if_fun(x1,x2):
return x1==v1 if x2==v2 else True
if_fun.__name__ = f"if x2 is {v2} then x1 is {v1}"
return if_fun

def eq_if_not_in_(actset):
"""first and third arguments are equal if action is not in actset
return lambda x1, a, x2: x1==x2 if a not in actset else True
def eq_if_not_fun(x1, a, x2):
return x1==x2 if a not in actset else True
eqg_if_not_fun.__name__ = f"first and third arguments are equal if
action is not in {actset}”
return eq_if_not_fun

nnn

Putting it together, this returns a list of actions that solves the problem for
a given horizon. If you want to do more than just return the list of actions, you
might want to get it to return the solution. Or even enumerate the solutions
(by using Search_with_AC_from_CSP).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

6.4. Planning as a CSP 141

stripsCSPPlanner.py — (continued)

def con_plan(prob,horizon):
"""finds a plan for problem prob given horizon.
csp = CSP_from_STRIPS(prob, horizon)
sol = Con_solver(csp).solve_one()
return csp.extract_plan(sol) if sol else sol

The following are some example queries.

stripsCSPPlanner.py — (continued)

from searchGeneric import Searcher

from cspConsistency import Search_with_AC_from_CSP, Con_solver
from stripsProblem import Planning_problem

import stripsProblem

Problem @

con_plan(stripsProblem.problem@,1) # should it succeed?

con_plan(stripsProblem.problem@,?2) # should it succeed?

con_plan(stripsProblem.problem@,3) # should it succeed?

To use search to enumerate solutions

#searcher@a =
Searcher (Search_with_AC_from_CSP(CSP_from_STRIPS(stripsProblem.problemo,
D))

#print(searcher@a.search()) # returns path to solution

Problem 1

con_plan(stripsProblem.probleml,5) # should it succeed?

con_plan(stripsProblem.problem1,4) # should it succeed?

To use search to enumerate solutions:

#searcheri5a =
Searcher(Search_with_AC_from_CSP(CSP_from_STRIPS(stripsProblem.probleml,
5))

#print(searcheri5a.search()) # returns path to solution

Problem 2
#con_plan(stripsProblem.problem2, 6) # should fail??
#con_plan(stripsProblem.problem2, 7) # should succeed???

Example 6.13

problem3 = Planning_problem(stripsProblem.delivery_domain,
{'SWC':True, 'RHC':False}, {'SWC':False})

#con_plan(problem3,2) # Horizon of 2

#tcon_plan(problem3,3) # Horizon of 3

problem4 = Planning_problem(stripsProblem.delivery_domain,{'SWC':True},
{'SWC':False, 'MW':False, 'RHM':False})

For the stochastic local search:
#from cspSLS import SLSearcher, Runtime_distribution

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

139

140
141
142

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

142

6. Deterministic Planning

cspplanning15 = CSP_from_STRIPS(stripsProblem.probleml, 5) # should

succeed

#se@ = SLSearcher(cspplanningl15); print(se@.search(100000,0.5))
#p = Runtime_distribution(cspplanning15)
#p.plot_runs(1000,1000,0.7) # warning may take a few minutes

6.5 Partial-Order Planning

To run the demo, in folder “aipython”, load ”stripsPOP.py”, and copy
and paste the commented-out example queries at the bottom of that
file.

A partial order planner maintains a partial order of action instances. An
action instance consists of a name and an index. You need action instances

because the same action could be carried out at different times.

stripsPOP.py — Partial-order Planner using STRIPS representation

from searchProblem import Arc, Search_problem
import random

class Action_instance(object):

next_index = @
def __init__(self,action,index=None):
if index is None:
index = Action_instance.next_index
Action_instance.next_index += 1
self.action = action
self.index = index

def __str__(self):
return f"{self.action}#{self.index}"

__repr__ = __str__ # __repr__ function is the same as the __str_

function

A partial-order planner is represented as a search problem (Section

where a node consists of:

e actions: a set of action instances.

e constraints: a set of (ay,az) pairs, where a; and a;, are action instances,

which represents that 2; must come before a, in the partial order. There
are a number of ways that this could be represented. The code below rep-
resents the set of pairs that are in transitive closure of the before relation.
This lets it quickly determine whether some before relation is consistent
with the current constraints, at the cost of pre-computing and storing the
transitive closure.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52

54
55
56
57
58
59
60
61

6.5. Partial-Order Planning 143

e agenda: a list of (s,a) pairs, where s is a (var,val) pair and 4 is an action
instance. This means that variable var must have value val before a can
occur.

e causal_links: a set of (a0, g,al) triples, where a; and a, are action instances
and g is a (var, val) pair. This holds when action gy makes g true for action
ay.

stripsPOP.py — (continued)

class POP_node(object):
"""3 (partial) partial-order plan. This is a node in the search

space.
def __init__(self, actions, constraints, agenda, causal_links):

nnn

* actions is a set of action instances
* constraints a set of (a@,al) pairs, representing a@<al,
closed under transitivity
* agenda list of (subgoal,action) pairs to be achieved, where
subgoal is a (variable,value) pair
* causal_links is a set of (a0,g,al) triples,
where ai are action instances, and g is a (variable,value) pair
self.actions = actions # a set of action instances
self.constraints = constraints # a set of (a@,al) pairs
self.agenda = agenda # list of (subgoal,action) pairs to be
achieved
self.causal_links = causal_links # set of (a@,g,al) triples

def __str__(self):

return ("actions: "+str({str(a) for a in self.actions})+
"\nconstraints: "+
str({(str(al),str(a2)) for (al,a2) in self.constraints})+
"\nagenda: "+
str([(str(s),str(a)) for (s,a) in self.agenda])+
"\ncausal_links:"+
str({(str(a@),str(g),str(a2)) for (a0d,g,a2) in

self.causal_links}))

extract_plan constructs a total order of action instances that is consistent
with the partial order.

stripsPOP.py — (continued)

def extract_plan(self):
"""returns a total ordering of the action instances consistent
with the constraints.
raises IndexError if there is no choice.
sorted_acts = []
other_acts = set(self.actions)
while other_acts:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

62
63

64
65
66

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

83

85
86
87
88
89
90
91
92
93
94
95
96

97

98

99

100

144

6. Deterministic Planning

a = random.choice([a for a in other_acts if
all(((al,a) not in self.constraints) for al in

sorted_acts

other_acts)])
.append(a)

other_acts.remove(a)
return sorted_acts

POP_search_from_STRIPS is an instance of a search problem. As such, it
needs start nodes, a goal, and the neighbors function.

stripsPOP.py — (continued)

from display import Di

splayable

class POP_search_from_STRIPS(Search_problem, Displayable):
def __init__(self,planning_problem):

Search_problem.

self.planning_problem = planning_problem

__init__(self)

self.start = Action_instance("start")
self.finish = Action_instance("finish")

def is_goal(self, node):
return node.agenda == []

def start_node(self):

constraints = {(self.start, self.finish)}

agenda = [(g, self.finish) for g in
self.planning_problem.goal.items()]
return POP_node([self.start,self.finish], constraints, agenda, [])

The neighbors method enumerates the neighbors of a given node, using

yield.

stripsPOP.py — (continued)

def neighbors(self, node):

nnn

enumerates the neighbors of node

nnn

self.display(3,"finding neighbors of\n", node)

if node.agenda:

subgoal,act1 = node.agendal0]
self.display(2,"selecting”,subgoal, "for"”, act1)
new_agenda = node.agendal[1:]

for act® in

if (self.achieves(act@, subgoal) and

node.actions:

self.possible((act@,act1),node.constraints)):

self.display(2,"” reusing”,act)

cons

new_clink = (act@,subgoal,actl)
new_

for

ts1 =

self.add_constraint((act@,act1),node.constraints)

cls = node.causal_links + [new_clink]

consts2 in

self.protect_cl_for_actions(node.actions,consts1,new_clink):

yield Arc(node,

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

101
102
103

104
105
106
107
108
109

110
111

112
113
114

115

116
117
118

120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135

136

6.5. Partial-Order Planning 145

POP_node (node.actions, consts2,new_agenda,new_cls),
cost=0)
for a0 in self.planning_problem.prob_domain.actions: #a@ is an
action
if self.achieves(a@, subgoal):

#a0@ achieves subgoal

new_a = Action_instance(a®)

self.display(2,” using new action”,new_a)

new_actions = node.actions + [new_a]

constsl =
self.add_constraint((self.start,new_a),node.constraints)

consts2 = self.add_constraint((new_a,act1),consts1)

new_agendal = new_agenda + [(pre,new_a) for pre in
a0.preconds.items()]

new_clink = (new_a,subgoal,act1)

new_cls = node.causal_links + [new_clink]

for consts3 in
self.protect_all_cls(node.causal_links,new_a,consts2):
for consts4 in

self.protect_cl_for_actions(node.actions,consts3,new_clink):
yield Arc(node,
POP_node(new_actions,consts4,new_agendal,new_cls),
cost=1)

Given a causal link (a0, subgoal, al), the following method protects the causal
link from each action in actions. Whenever an action deletes subgoal, the action
needs to be before a0 or after al. This method enumerates all constraints that
result from protecting the causal link from all actions.

stripsPOP.py — (continued)

def protect_cl_for_actions(self, actions, constrs, clink):
"""yields constraints that extend constrs and
protect causal link (a@, subgoal, al)
for each action in actions
if actions:
a = actions[0]
rem_actions = actions[1:]
a0, subgoal, al = clink
if a != a0 and a != al and self.deletes(a,subgoal):
if self.possible((a,a®),constrs):
new_const = self.add_constraint((a,a®),constrs)
for e in
self.protect_cl_for_actions(rem_actions,new_const,clink):
yield e # could be "yield from”
if self.possible((al,a),constrs):
new_const = self.add_constraint((al,a),constrs)

for e in
self.protect_cl_for_actions(rem_actions,new_const,clink):
yield e

else:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

137

138
139

141
142
143
144
145
146
147
148
149

150
151
152

153
154

155
156

158
159
160

161
162
163
164

165
166
167
168
169
170

146 6. Deterministic Planning

for e in
self.protect_cl_for_actions(rem_actions,constrs,clink):
yield e

else:
yield constrs

Given an action act, the following method protects all the causal links in
clinks from act. Whenever act deletes subgoal from some causal link (a0, subgoal, al),
the action act needs to be before a0 or after al. This method enumerates all con-
straints that result from protecting the causal links from act.

stripsPOP.py — (continued)

def protect_all_cls(self, clinks, act, constrs):
"""yields constraints that protect all causal links from act
if clinks:
(ad,cond,al) = clinks[@] # select a causal link
rem_clinks = clinks[1:] # remaining causal links
if act != a0 and act != al and self.deletes(act,cond):
if self.possible((act,a@),constrs):
new_const = self.add_constraint((act,a@),constrs)
for e in self.protect_all_cls(rem_clinks,act,new_const):
yield e
if self.possible((al,act),constrs):
new_const = self.add_constraint((al,act),constrs)
for e in self.protect_all_cls(rem_clinks,act,new_const):
yield e

nnn

else:
for e in self.protect_all_cls(rem_clinks,act,constrs): yield
e
else:
yield constrs

The following methods check whether an action (or action instance) achieves
or deletes some subgoal.

stripsPOP.py — (continued)

def achieves(self,action,subgoal):
var,val = subgoal
return var in self.effects(action) and self.effects(action)[var] ==
val

def deletes(self,action,subgoal):
var,val = subgoal
return var in self.effects(action) and self.effects(action)[var] !=
val

def effects(self,action):
"""returns the variable:value dictionary of the effects of action.
works for both actions and action instances"""
if isinstance(action, Action_instance):

action = action.action

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

6.5. Partial-Order Planning 147

171 if action == "start":

172 return self.planning_problem.initial_state
173 elif action == "finish":

174 return {}

175 else:

176 return action.effects

The constraints are represented as a set of pairs closed under transitivity.
Thus if (a,b) and (b, ¢) are the list, then (a, ¢) must also be in the list. This means
that adding a new constraint means adding the implied pairs, but querying
whether some order is consistent is quick.

stripsPOP.py — (continued)

178 def add_constraint(self, pair, const):

179 if pair in const:

180 return const

181 todo = [pair]

182 newconst = const.copy()

183 while todo:

184 x0,x1 = todo.pop()

185 newconst.add((x0,x1))

186 for x,y in newconst:

187 if x==x1 and (x@,y) not in newconst:
188 todo. append((x0,y))

189 if y==x0 and (x,x1) not in newconst:
190 todo.append((x,x1))

191 return newconst

192

193 def possible(self,pair,constraint):

194 (x,y) = pair

195 return (y,x) not in constraint

Some code for testing:

stripsPOP.py — (continued)

197 | from searchBranchAndBound import DF_branch_and_bound
198 | from searchMPP import SearcherMPP

199 | import stripsProblem

200
201 | rplanning@® = POP_search_from_STRIPS(stripsProblem.problem@)
202 | rplanning1l = POP_search_from_STRIPS(stripsProblem.problem1)
203 | rplanning2 = POP_search_from_STRIPS(stripsProblem.problem2)
204 | searcher@ = DF_branch_and_bound(rplanning®,5)

205 | searcher@a = SearcherMPP(rplanning®)

206 |searcher1 = DF_branch_and_bound(rplanningl,10)

207 |searcherla = SearcherMPP(rplanningl)

208 | searcher2 = DF_branch_and_bound(rplanning2,10)

209 | searcher2a = SearcherMPP(rplanning?2)

210 |# Try one of the following searchers

211 |# a = searcher@.search()

212 |# a = searcher@a.search()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

213
214
215
216
217
218
219
220

6. Deterministic Planning

DF_branch_and_bound.max_display_level = @ # less detailed display

148

a.end().extract_plan() # print a plan found

a.end().constraints # print the constraints

SearcherMPP.max_display_level = @ # less detailed display
#

a = searcherl.search()

a = searcherla.search()

a = searcher2.search()

a = searcher2a.search()

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

Chapter 7

Supervised Machine Learning

This first chapter on machine learning covers the following topics:
¢ Data: how to load it, training and test sets

¢ Features: many of the features come directly from the data. Sometimes it
is useful to construct features, e.g. height > 1.9m might be a Boolean fea-
ture constructed from the real-values feature height. The next chapter is
about neural networks and how to learn features; the code in this chapter
constructs them explicitly in what is often known as feature engineering.

¢ Learning with no input features: this is the base case of many methods.
What should you predict if you have no input features? This provides the
base cases for many algorithms (e.g., decision tree algorithm) and base-
lines that more sophisticated algorithms need to beat. It also provides
ways to test various predictors.

* Decision tree learning: one of the classic and simplest learning algo-
rithms, which is the basis of many other algorithms.

* Cross validation and parameter tuning: methods to prevent overfitting.

¢ Linear regression and classification: other classic and simple techniques
that often work well (particularly combined with feature learning or en-
gineering).

¢ Boosting: combining simpler learning methods to make even better learn-
ers.

A good source of classic datasets is the UCI Machine Learning Repository
[Lichman), 2013] [Dua and Graff, 2017]]. The SPECT, IRIS, and car datasets (car-
bool is a Boolean version of the car dataset) are from this repository.

149

11
12
13
14
15
16

150 7. Supervised Machine Learning

Dataset # Examples #Columns Input Types Target Type
SPECT 267 23 Boolean Boolean
IRIS 150 5 numeric categorical
carbool 1728 7 categorical/numeric numeric
holiday 32 6 Boolean Boolean
mail reading 28 5 Boolean Boolean
tv_likes 12 5 Boolean Boolean
simp_regr 7 2 numeric numeric

Figure 7.1: Some of the datasets used here.

7.1 Representations of Data and Predictions

The code uses the following definitions and conventions:
¢ A dataset is an enumeration of examples.

¢ An example is a list (or tuple) of values. The values can be numbers or
strings.

¢ A feature is a function from examples into the range of the feature. Each
feature f also has the following attributes:

n o n

f.ftype, the type of f, one of: "boolean”, "categorical”, "numeric”

f.frange, the set of values of f seen in the dataset, represented as a list.
The ftype is inferred from the frange if not given explicitly.

f.__doc__, the docstring, a string description of f (for printing).

—_

Thus for example, a Boolean feature is a function from the examples into
{False, True}. So, if f is a Boolean feature, f.frange == [False, True|, and if
e is an example, f (e) is either True or False.

learnProblem.py — A Learning Problem
import math, random, statistics

import csv

from display import Displayable

from utilities import argmax

boolean = [False, True]

A dataset is partitioned into a training set (train) and a test set (test). The
target feature is the feature that a learner making a prediction of. A dataset ds
has the following attributes:

ds.train a list of the training examples
ds.test a list of the test examples

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

18
19

20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48
49
50
51
52
53
54
55

7.1. Representations of Data and Predictions 151

ds.target_index the index of the target

ds.target the feature corresponding to the target (a function as described
above)

ds.input_features a list of the input features

learnProblem.py — (continued)

class Data_set(Displayable):
""" A dataset consists of a list of training data and a list of test
data.

nnn

def __init__(self, train, test=None, prob_test=0.20, target_index=0,
header=None, target_type= None, one_hot=False,
seed=None): #12345):
"""A dataset for learning.
train is a list of tuples representing the training examples
test is the list of tuples representing the test examples
if test is None, a test set is created by selecting each
example with probability prob_test
target_index is the index of the target.
If negative, it counts from right.
If target_index is larger than the number of properties,
there is no target (for unsupervised learning)
header is a list of names for the features
target_type is either None for automatic detection of target type
or one of "numeric”, "boolean", "categorical”
one_hot is True gives a one-hot encoding of categorical features
seed is for random number; None gives a different test set each time
if seed: # given seed makes partition consistent from run-to-run
random. seed(seed)
if test is None:
train,test = partition_data(train, prob_test)
self.train = train
self.test = test

self.display(1,”"Training set has"”,len(train),"examples. Number of

columns: ",{len(e) for e in train})
self.display(1,"Test set has",len(test),"examples. Number of
columns: ",{len(e) for e in test})

self.prob_test = prob_test

self.num_properties = len(self.train[0])

if target_index < @: #allows for -1, -2, etc.
self.target_index = self.num_properties + target_index

else:
self.target_index = target_index

self.header = header

self.domains = [set() for i in range(self.num_properties)]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72

74
75
76

77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97

152 7. Supervised Machine Learning

for example in self.train:
for ind,val in enumerate(example):
self.domains[ind].add(val)
self.conditions_cache = {} # cache for computed conditions
self.create_features(one_hot)
if target_type:
self.target.ftype = target_type
self.display(1,"There are”,len(self.input_features),"input
features")

def __str__(self):
if self.train and len(self.train)>0:
return ("Data: "+str(len(self.train))+" training examples,
+str(len(self.test))+" test examples, "
+str(len(self.train[@]))+" features.”)

n

else:
return ("Data: "+str(len(self.train))+" training examples,
+str(len(self.test))+" test examples.”)

n

A feature is a function that takes an example and returns a value in the
range of the feature. Each feature has a frange, which gives the range of the

feature, and an ftype that gives the type, one of “boolean”, “numeric” or “cat-
egorical”.

learnProblem.py — (continued)

def create_features(self, one_hot=False):
"""create the set of features.
if one_hot==True then make categorical features into booleans for
each value
self.target = None
self.input_features = []
for i in range(self.num_properties):
frange = list(self.domains[i])
ftype = self.infer_type(frange)
if one_hot and ftype == "categorical” and i !=
self.target_index:
for val in frange:
def feat(e,index=i,val=val):
return e[index]==val
if self.header:
feat.__doc_
else:
feat.__doc__ = f"e[{i}]1={val}"
feat.frange = boolean
feat.type = "boolean”
self.input_features.append(feat)

self.header[i]+"="+val

else:
def feat(e,index=1i):
return e[index]
if self.header:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

98

99
100
101
102
103
104
105
106

108
109
110
111

112
113
114
115
116

7.1. Representations of Data and Predictions 153

feat.__doc__ = self.header[i]
else:
feat.__doc__ = I'e["+5tl"(i)+":|”

feat.frange = frange
feat.ftype = ftype

if i == self.target_index:
self.target = feat
else:

self.input_features.append(feat)

The following tries to infer the type of each feature. Sometimes this can be
wrong, (e.g., when the numbers are really categorical) and may need to be set
explicitly.

learnProblem.py — (continued)

def infer_type(self,domain):
"""Infers the type of a feature with domain

if all(v in {True,False} for v in domain) or all(v in {0,1} for v
in domain):
return "boolean”
if all(isinstance(v, (float,int)) for v in domain):
return "numeric”
else:
return "categorical”

7.1.1 Creating Boolean Conditions from Features

Some of the algorithms require Boolean input features or features with range
{0,1}. In order to be able to use these algorithms on datasets that allow for
arbitrary domains of input variables, the following code constructs Boolean
conditions from the attributes.

There are 3 cases:

* When the range only has two values, one is designated to be the “true”
value.

¢ When the values are all numeric, assume they are ordered (as opposed
to just being some classes that happen to be labelled with numbers) and
construct Boolean features for splits of the data. That is, the feature is
e[ind] < cut for some value cut. The number of cut values is less than or
equal to max_num_cuts.

e When the values are not all numeric, it creates an indicator function for
each value. An indicator function for a value returns true when that value
is given and false otherwise. Note that we can’t create an indicator func-
tion for values that appear in the test set but not in the training set be-
cause we haven’t seen the test set. For the examples in the test set with a

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151
152
153
154
155
156
157
158
159

154 7. Supervised Machine Learning

value that doesn’t appear in the training set for that feature, the indicator
functions all return false.

There is also an option categorical_only to create only Boolean features for
categorical input features, and not to make cuts for numerical values.

learnProblem.py — (continued)

def conditions(self, max_num_cuts=8, categorical_only = False):
"""returns a list of boolean conditions from the input features
max_num_cuts is the maximum number of cute for numeric features
categorical_only is true if only categorical features are made
binary
if (max_num_cuts, categorical_only) in self.conditions_cache:
return self.conditions_cache[(max_num_cuts, categorical_only)]
conds = []
for ind,frange in enumerate(self.domains):
if ind != self.target_index and len(frange)>1:
if len(frange) == 2:
two values, the feature is equality to one of them.
true_val = list(frange)[1] # choose one as true
def feat(e, i=ind, tv=true_val):
return e[i]==tv
if self.header:
feat.__doc__ = f"{self.header[ind]}=={true_val}"
else:
feat.__doc__ = f"e[{ind}]=={true_val}"
feat.frange = boolean
feat.ftype = "boolean”
conds.append(feat)
elif all(isinstance(val, (int,float)) for val in frange):
if categorical_only: # numeric, don't make cuts
def feat(e, i=ind):
return e[i]

feat.__doc__ = f"e[{ind}]"
conds. append(feat)
else:

all numeric, create cuts of the data
sorted_frange = sorted(frange)
num_cuts = min(max_num_cuts,len(frange))
cut_positions = [len(frange)*i//num_cuts for i in

range(1,num_cuts)]
for cut in cut_positions:

cutat = sorted_frange[cut]

def feat(e, ind_=ind, cutat=cutat):

return e[ind_] < cutat

if self.header:

feat.__doc__ = self.header[ind]+"<"+str(cutat)
else:
feat.__doc__ = "e["+str(ind)+"]<"+str(cutat)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

7.1. Representations of Data and Predictions 155

feat.frange = boolean
feat.ftype = "boolean”
conds.append(feat)
else:
create an indicator function for every value
for val in frange:
def feat(e, ind_=ind, val_=val):

return e[ind_] == val_
if self.header:

feat.__doc__ = self.header[ind]+"=="+str(val)
else:

feat.__doc__= "e["+str(ind)+"]=="+str(val)

feat.frange = boolean

feat.ftype = "boolean”

conds. append(feat)
self.conditions_cache[(max_num_cuts, categorical_only)] = conds
return conds

Exercise 7.1 Change the code so that it splits using e[ind] < cut instead of e[ind] <
cut. Check boundary cases, such as 3 elements with 2 cuts. As a test case, make
sure that when the range is the 30 integers from 100 to 129, and you want 2 cuts,
the resulting Boolean features should be e[ind] < 109 and e[ind] < 119 to make
sure that each of the resulting domains is of equal size.

Exercise 7.2 This splits on whether the feature is less than one of the values in
the training set. Sam suggested it might be better to split between the values in
the training set, and suggested using

cutat = (sorted_frange[cut| + sorted_frange[cut — 1]) /2

Why might Sam have suggested this? Does this work better? (Try it on a few
datasets).

7.1.2 Evaluating Predictions

A predictor is a function that takes an example and makes a prediction on the
values of the target features.

A loss takes a prediction and the actual value and returns a non-negative
real number; lower is better. The error for a dataset is either the mean loss, or
sometimes the sum of the losses. When reporting results the mean is usually
used. When it is the sum, this will be made explicit.

The function evaluate_dataset returns the average error for each example,
where the error for each example depends on the evaluation criteria. Three
evaluation criteria are implemented, the squared error (average of the square
of the difference between the actual and predicted values), absolute errors (av-
erage of the absolute difference between the actual and predicted values) and
the log loss (the average negative log-likelihood, which can be interpreted as
the number of bits to describe an example using a code based on the prediction
treated as a probability).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

178
179
180
181
182
183
184
185
186

187
188
189
190
191
192

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218

156 7. Supervised Machine Learning

learnProblem.py — (continued)

def evaluate_dataset(self, data, predictor, error_measure):
"""Evaluates predictor on data according to the error_measure
predictor is a function that takes an example and returns a
prediction for the target features.
error_measure(prediction,actual) -> non-negative real
if data:
try:
value = statistics.mean(error_measure(predictor(e),
self.target(e))
for e in data)
except ValueError: # if error_measure gives an error
return float("inf") # infinity
return value
else:
return math.nan # not a number

The following evaluation criteria are defined. This is defined using a class,
Evaluate but no instances will be created. Just use Evaluate. squared_loss etc.
(Please keep the __doc__ strings a consistent length as they are used in tables.)
The prediction is either a real value or a {value : probability} dictionary or a list.
The actual is either a real number or a key of the prediction.

learnProblem.py — (continued)

class Evaluate(object):
"""A container for the evaluation measures”""
def squared_loss(prediction, actual):
"squared loss "
if isinstance(prediction, (list,dict)):
return (1-prediction[actuall)#**2 # the correct value is 1
else:
return (prediction-actual)**2

def absolute_loss(prediction, actual):
"absolute loss "
if isinstance(prediction, (list,dict)):
return abs(1-prediction[actual]) # the correct value is 1
else:
return abs(prediction-actual)

def log_loss(prediction, actual):
"log loss (bits)"”
try:
if isinstance(prediction, (list,dict)):
return -math.log2(prediction[actuall)
else:
return -math.log2(prediction) if actual==1 else
-math.log2(1-prediction)
except ValueError:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

219
220
221
222
223
224
225

226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243
244
245

7.1. Representations of Data and Predictions 157

return float("inf") # infinity

def accuracy(prediction, actual):
"accuracy "
if isinstance(prediction, dict):
prev_val = prediction[actuall
return 1 if all(prev_val >= v for v in prediction.values())
else 0
if isinstance(prediction, list):
prev_val = prediction[actual]
return 1 if all(prev_val >= v for v in prediction) else 0
else:
return 1 if abs(actual-prediction) <= 0.5 else 0

all_criteria = [accuracy, absolute_loss, squared_loss, log_loss]

7.1.3 Creating Test and Training Sets

The following method partitions the data into a training set and a test set. Note
that this does not guarantee that the test set will contain exactly a proportion
of the data equal to prob_test.

[An alternative is to use random. sample () which can guarantee that the test
set will contain exactly a particular proportion of the data. However this would
require knowing how many elements are in the dataset, which it may not know,
as data may just be a generator of the data (e.g., when reading the data from a
file).]

learnProblem.py — (continued)

def partition_data(data, prob_test=0.30):
"""partitions the data into a training set and a test set, where
prob_test is the probability of each example being in the test set.

nnn

train = []
test = []
for example in data:
if random.random() < prob_test:
test.append(example)
else:
train.append(example)
return train, test

7.1.4 Importing Data From File

A dataset is typically loaded from a file. The default here is that it loaded from
a CSV (comma separated values) file, although the separator can be changed.
This assumes that all lines that contain the separator are valid data (so it only
includes those data items that contain more than one element). This allows for

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

247
248

249
250

251
252
253

254

255
256
257

258

259
260
261
262
263
264
265

266
267
268

269
270
271
272
273

158 7. Supervised Machine Learning

blank lines and comment lines that do not contain the separator. However, it
means that this method is not suitable for cases where there is only one feature.

Note that data_all and data_tuples are generators. data_all is a generator of a
list of list of strings. This version assumes that CSV files are simple. The stan-
dard csv package, that allows quoted arguments, can be used by uncomment-
ing the line for data_all and commenting out the line that follows. data_tuples
contains only those lines that contain the delimiter (others lines are assumed to
be empty or comments), and tries to convert the elements to numbers when-
ever possible.

This allows for some of the columns to be included; specified by include_only.
Note that if include_only is specified, the target index is the index for the in-
cluded columns, not the original columns.

learnProblem.py — (continued)

class Data_from_file(Data_set):

def __init__(self, file_name, separator="',
prob_test=0.3,
has_header=False, target_index=0, one_hot=False,
categorical=[], target_type= None, include_only=None,
seed=None): #seed=12345):

create a dataset from a file

separator is the character that separates the attributes

num_train is a number specifying the first num_train tuples are
training, or None

prob_test is the probability an example should in the test set (if
num_train is None)

has_header is True if the first line of file is a header

target_index specifies which feature is the target

one_hot specifies whether categorical features should be encoded as
one_hot.

categorical is a set (or list) of features that should be treated
as categorical

target_type is either None for automatic detection of target type
or one of "numeric”, "boolean", "categorical”

include_only is a list or set of indexes of columns to include

nnn

, hum_train=None,

nnn

with open(file_name, 'r',newline="") as csvfile:
self.display(1,"Loading"”,file_name)
data_all = csv.reader(csvfile,delimiter=separator) # for more
complicated CSV files
data_all = (line.strip().split(separator) for line in csvfile)
if include_only is not None:
data_all = ([v for (i,v) in enumerate(line) if i in
include_only]
for line in data_all)
if has_header:
header = next(data_all)
else:
header = None

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

274

275
276
277

278
279

280
281
282

283
284

285

287
288
289
290
291
292
293

294

295
296
297

298

299
300
301
302
303
304
305

306

7.1. Representations of Data and Predictions 159

data_tuples = (interpret_elements(d) for d in data_all if
len(d)>1)
if num_train is not None:
training set is divided into training then text examples
the file is only read once, and the data is placed in
appropriate list
train = []
for i in range(num_train): # will give an error if
insufficient examples
train.append(next(data_tuples))
test = list(data_tuples)
Data_set.__init__(self,train, test=test,
target_index=target_index, header=header)
else: # randomly assign training and test examples
Data_set.__init__(self,data_tuples, test=None,
prob_test=prob_test,
target_index=target_index, header=header,
seed=seed, target_type=target_type,
one_hot=one_hot)

The following class is used for datasets where the training and test are in dif-
ferent files

learnProblem.py — (continued)

class Data_from_files(Data_set):
def __init__(self, train_file_name, test_file_name, separator=',',
has_header=False, target_index=@, one_hot=False,
categorical=[], target_type= None, include_only=None):
create a dataset from separate training and file
separator is the character that separates the attributes
num_train is a number specifying the first num_train tuples are
training, or None
prob_test is the probability an example should in the test set (if
num_train is None)
has_header is True if the first line of file is a header
target_index specifies which feature is the target
one_hot specifies whether categorical features should be encoded as
one-hot
categorical is a set (or list) of features that should be treated
as categorical
target_type is either None for automatic detection of target type
or one of "numeric", "boolean", "categorical”
include_only is a list or set of indexes of columns to include

nnn

nnn

with open(train_file_name, 'r',newline='"') as train_file:
with open(test_file_name, 'r',newline="'"') as test_file:
data_all = csv.reader(csvfile,delimiter=separator) # for more
complicated CSV files
train_data = (line.strip().split(separator) for line in
train_file)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

307

308
309

310
311

312
313

314
315
316
317

318

319
320

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

160 7. Supervised Machine Learning

test_data = (line.strip().split(separator) for line in
test_file)
if include_only is not None:
train_data = ([v for (i,v) in enumerate(line) if i in
include_only]
for line in train_data)
test_data = ([v for (i,v) in enumerate(line) if i in
include_only]
for line in test_data)
if has_header: # this assumes the training file has a header
and the test file doesn't
header = next(train_data)
else:
header = None
train_tuples = [interpret_elements(d) for d in train_data if
len(d)>1]
test_tuples = [interpret_elements(d) for d in test_data if
len(d)>1]
Data_set.__init__(self,train_tuples, test_tuples,
target_index=target_index, header=header,
one_hot=one_hot)

When reading from a file all of the values are strings. This next method
tries to convert each value into a number (an int or a float) or Boolean, if it is
possible.

learnProblem.py — (continued)

def interpret_elements(str_list):
"""make the elements of string list str_list numeric if possible.
Otherwise remove initial and trailing spaces.
res = []
for e in str_list:
try:
res.append(int(e))
except ValueError:
try:
res.append(float(e))
except ValueError:
se = e.strip()
if se in ["True”,"true"”,"TRUE"]:
res.append(True)
elif se in ["False”,"false”,"FALSE"]:
res.append(False)
else:
res.append(e.strip())
return res

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

343
344

345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373

7.1. Representations of Data and Predictions 161

7.1.5 Augmented Features

Sometimes we want to augment the features with new features computed from
the old features (e.g., the product of features). The following code creates a new
dataset from an old dataset but with new features. Note that special cases of
these are kernels; mapping the original feature space into a new space, which
allow a neat way to do learning in the augmented space for many mappings
(the “kernel trick”). This is beyond the scope of AIPython; those interested
should read about support vector machines.

A feature is a function of examples. A unary feature constructor takes a fea-
ture and returns a new feature. A binary feature combiner takes two features
and returns a new feature.

learnProblem.py — (continued)

class Data_set_augmented(Data_set):
def __init__(self, dataset, unary_functions=[], binary_functions=[],
include_orig=True):
"""creates a dataset like dataset but with new features
unary_function is a list of unary feature constructors
binary_functions is a list of binary feature combiners.
include_orig specifies whether the original features should be
included
self.orig_dataset = dataset
self.unary_functions = unary_functions
self.binary_functions = binary_functions
self.include_orig = include_orig
self.target = dataset.target
Data_set.__init__(self,dataset.train, test=dataset.test,
target_index = dataset.target_index)

def create_features(self, one_hot=False):
"""create the set of features.
one_hot is ignored, but could be implemented as in
Data_set.create_features
if self.include_orig:
self.input_features = self.orig_dataset.input_features.copy()
else:
self.input_features = []
for u in self.unary_functions:
for f in self.orig_dataset.input_features:
self.input_features.append(u(f))
for b in self.binary_functions:
for f1 in self.orig_dataset.input_features:
for f2 in self.orig_dataset.input_features:
if f1 1= f2:
self.input_features.append(b(f1,f2))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

162 7. Supervised Machine Learning

The following are useful unary feature constructors and binary feature com-
biner.

learnProblem.py — (continued)

def square(f):
"""a unary feature constructor to construct the square of a feature

nnn

def sq(e):

return f(e)x*2
sq.__doc__ = f.__doc__+"xx2"
return sq

def power_feat(n):
"""ogiven n returns a unary feature constructor to construct the nth
power of a feature.
e.g., power_feat(2) is the same as square, defined above
def fn(f,n=n):
def pow(e,n=n):
return f(e)**n
pow.__doc__ = f.__doc__+"*x"+str(n)
return pow
return fn

def prod_feat(f1,f2):
"""3 new feature that is the product of features f1 and f2
def feat(e):
return f1(e)*f2(e)
feat.__doc__ = f1.__doc__+"*"+f2.__doc__
return feat

def eq_feat(f1,f2):
"""3 new feature that is 1 if f1 and f2 give same value
def feat(e):
return 1 if f1(e)==f2(e) else 0@
feat.__doc__ = f1.__doc__+"=="+f2.__doc__

return feat

def neqg_feat(f1,f2):

"""a new feature that is 1 if f1 and f2 give different values
def feat(e):
return 1 if f1(e)!=f2(e) else 0@
feat.__doc__ = f1.__doc__+"!="+f2.__doc__
return feat
Example:

learnProblem.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

418
419

420
421
422
423

424
425
426
427
428
429
430
431

432
433

7.2. Generic Learner Interface 163

from learnProblem import Data_set_augmented,prod_feat

data = Data_from_file('data/holiday.csv', has_header=True, num_train=19,
target_index=-1)

data = Data_from_file('data/iris.data', prob_test=1/3, target_index=-1)

Data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)

dataplus = Data_set_augmented(data,[],[prod_feat])

dataplus = Data_set_augmented(data,[],[prod_feat,neq_feat])

Exercise 7.3 For symmetric properties, such as product, we don’t need both
f1xf2as well as f2 * f1 as extra properties. Allow the user to be able to declare
feature constructors as symmetric (by associating a Boolean feature with them).
Change construct _features so that it does not create both versions for symmetric
combiners.

7.2 Generic Learner Interface

Alearner takes a dataset (and possibly other arguments specific to the method).
To get it to learn, call the learn() method. This implements Displayable so that it
can display traces at multiple levels of detail (perhaps with a GUI).

learnProblem.py — (continued)

from display import Displayable

class Learner(Displayable):
def __init__(self, dataset):
raise NotImplementedError(”Learner.__init__") # abstract method

def learn(self):
"""returns a predictor, a function from a tuple to a value for the
target feature

nnn

raise NotImplementedError("learn”) # abstract method

7.3 Learning With No Input Features

If you need make the same prediction for each example, what prediction should
you make? This can be used as a naive baseline; if a more sophisticated method
does not do better than this, it is not useful. This also provides the base case
for some methods, such as decision-tree learning.

To run demo to compare different prediction methods on various eval-
uation criteria, in folder “aipython”, load ”"learnNoInputs.py”, using
e.g., ipython -i learnNoInputs.py, and it prints some test results.

There are a few alternatives as to what could be allowed in a prediction:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

164

7. Supervised Machine Learning

* apoint prediction, where we are only allowed to predict one of the values

of the feature. For example, if the values of the feature are {0,1} we are
only allowed to predict 0 or 1 or of the values are ratings in {1,2,3,4,5},
we can only predict one of these integers.

a point prediction, where we are allowed to predict any value. For exam-
ple, if the values of the feature are {0,1} we may be allowed to predict
0.3, 1, or even 1.7. For all of the criteria defined, there is no point in pre-
dicting a value greater than 1 or less that zero (but that doesn’t mean you
can’t), but it is often useful to predict a value between 0 and 1. If the
values are ratings in {1,2,3,4,5}, we may want to predict 3.4.

a probability distribution over the values of the feature. For each value v,
we predict a non-negative number p,, such that the sum over all predic-
tions is 1.

Here are some prediction functions that take in an enumeration of values,

a domain, and returns a value or dictionary of {value : prediction}. Note that
cmedian returns one of the middle values when there are an even number of
examples, whereas median gives the average of them (and so cmedian is appli-
cable for ordinals that cannot be considered cardinal values). Similarly, cmode
picks one of the values when more than one value has the maximum number
of elements.

learnNolnputs.py — Learning ignoring all input features

from learnProblem import Evaluate
import math, random, collections, statistics
import utilities # argmax for (element,value) pairs

class Predict(object):

htt

"""The class of prediction methods for a list of values.

Please make the doc strings the same length, because they are used in
tables.

Note that we don't need self argument, as we are creating Predict
objects,

To use call Predict.laplace(data) etc.

nnn

The following return a distribution over values (for classification)

def empirical(data, domain=[@,1], icount=0):
"empirical dist "
returns a distribution over values
counts = {v:icount for v in domain}
for e in data:
counts[e] += 1
s = sum(counts.values())
return {k:v/s for (k,v) in counts.items()}

def bounded_empirical(data, domain=[0,1], bound=0.01):
"bounded empirical”

ps://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79

7.3. Learning With No Input Features 165

return {k:min(max(v,bound),1-bound) for (k,v) in
Predict.empirical(data, domain).items()}

def laplace(data, domain=[0,1]):
"Laplace " # for categorical data
return Predict.empirical(data, domain, icount=1)

def cmode(data, domain=[0,1]):
"mode " # for categorical data
md = statistics.mode(data)
return {v: 1 if v==md else @ for v in domain}

def cmedian(data, domain=[0,1]):
"median " # for categorical data
md = statistics.median_low(data) # always return one of the values
return {v: 1 if v==md else @ for v in domain}

The following return a single prediction (for regression). domain
is ignored.

def mean(data, domain=[0,1]):
"mean "
returns a real number
return statistics.mean(data)

def rmean(data, domain=[@,1], mean@=0, pseudo_count=1):
"regularized mean"
returns a real number.
mean@ is the mean to be used for @ data points
With mean0=0.5, pseudo_count=2, same as laplace for [0,1] data
this works for enumerations as well as lists
sum = mean® * pseudo_count
count = pseudo_count
for e in data:
sum += e
count += 1
return sum/count

def mode(data, domain=[0,1]):
”mode n
return statistics.mode(data)
def median(data, domain=[0,1]):
"median "

return statistics.median(data)

all = [empirical, mean, rmean, bounded_empirical, laplace, cmode, mode,
median,cmedian]

The following suggests appropriate predictions as a function of the

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

166 7. Supervised Machine Learning

target type
80 select = {"boolean”: [empirical, bounded_empirical, laplace, cmode,
cmedian],
81 "categorical”: [empirical, bounded_empirical, laplace, cmode,
cmedian],
82 "numeric”: [mean, rmean, mode, median]}

7.3.1 Evaluation

To evaluate a point prediction, let’s first generate some possible values, 0 and
1 for the target feature. Given the ground truth prob, a number in the range
[0,1], the following code generates some training and test data where prob is
the probability of each example being 1. To generate a 1 with probability prob,
it generates a random number in range [0,1] and return 1 if that number is less
than prob. A prediction is computed by applying the predictor to the training
data, which is evaluated on the test set. This is repeated num_samples times.

Let’s evaluate the predictions of the possible selections according to the
different evaluation criteria, for various training sizes.

learnNolnputs.py — (continued)

84 |def test_no_inputs(error_measures = Evaluate.all_criteria,

num_samples=10000,

85 test_size=10, training_sizes=

[1,2,3,4,5,10,20,100,1000]):

86 for train_size in training_sizes:

87 results = {predictor: {error_measure: @ for error_measure in

error_measures}

88 for predictor in Predict.all}

89 for sample in range(num_samples):

90 prob = random.random()

91 training = [1 if random.random()<prob else @ for i in

range(train_size)]

92 test = [1 if random.random()<prob else @ for i in

range(test_size)]

93 for predictor in Predict.all:

94 prediction = predictor(training)

95 for error_measure in error_measures:

% results[predictor][error_measure] += sum(

error_measure(prediction,actual)

97 for actual in
test) /
test_size

98 print(f"For training size {train_size}:")

99 print(” Predictor\t”,”\t".join(error_measure.__doc__ for

100 error_measure in

error_measures),sep="\t")

101 for predictor in Predict.all:

102 print(f" {predictor.__doc__3}",

103 "\t".join("{:.7f}".format (results[predictor][error_measure]/num_samples)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

104

105
106
107

11
12
13
14
15
16
17
18

19

20
21

7.4. Decision Tree Learning 167

for error_measure in
error_measures),sep="\t")

if __name__ == "__main__":
test_no_inputs()

Exercise 7.4 Which predictor works best for low counts when the error is

(a) Squared error
(b) Absolute error
(c) Logloss
You may need to try this a few times to make sure your answer is supported by

the evidence. Does the difference from the other methods get more or less as the
number of examples grow?

Exercise 7.5 Suggest some other predictions that only take the training data.
Does your method do better than the given methods? A simple way to get other
predictors is to vary the threshold of bounded average, or to change the pseodo-
counts of the Laplace method (use other numbers instead of 1 and 2).

7.4 Decision Tree Learning

To run the decision tree learning demo, in folder ”aipython”, load
”learnDT.py”, using e.g., ipython -i learnDT.py, and it prints some
test results. To try more examples, copy and paste the commented-
out commands at the bottom of that file. This requires Python 3 with
matplotlib.

The decision tree algorithm does binary splits, and assumes that all input
features are binary functions of the examples. It stops splitting if there are
no input features, the number of examples is less than a specified number of
examples or all of the examples agree on the target feature.

learnDT.py — Learning a binary decision tree
from learnProblem import Learner, Evaluate

from learnNoInputs import Predict

import math

class DT_learner(Learner):
def __init__(self,

dataset,

split_to_optimize=Evaluate.log_loss, # to minimize for at
each split

leaf_prediction=Predict.empirical, # what to use for value
at leaves

train=None, # used for cross validation

max_num_cuts=8, # maximum number of conditions to split a
numeric feature into

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48

49
50
51

168 7. Supervised Machine Learning

gamma=1e-7, # minimum improvement needed to expand a node
min_child_weight=10):
self.dataset = dataset
self.target = dataset.target
self.split_to_optimize = split_to_optimize
self.leaf_prediction = leaf_prediction
self.max_num_cuts = max_num_cuts
self.gamma = gamma
self.min_child_weight = min_child_weight
if train is None:
self.train = self.dataset.train
else:
self.train = train

def learn(self, max_num_cuts=8):
"""learn a decision tree"""
return self.learn_tree(self.dataset.conditions(self.max_num_cuts),
self.train)

The main recursive algorithm, takes in a set of input features and a set of
training data. It first decides whether to split. If it doesn’t split, it makes a point
prediction, ignoring the input features.

It only splits if the best split increases the error by at least gamma. This im-
plies it does not split when:

¢ there are no more input features

¢ there are fewer examples than min_number_examples,
¢ all the examples agree on the value of the target, or
¢ the best split puts all examples in the same partition.

If it splits, it selects the best split according to the evaluation criterion (as-
suming that is the only split it gets to do), and returns the condition to split on
(in the variable split) and the corresponding partition of the examples.

learnDT.py — (continued)

def learn_tree(self, conditions, data_subset):
"""returns a decision tree
conditions is a set of possible conditions
data_subset is a subset of the data used to build this (sub)tree

where a decision tree is a function that takes an example and

makes a prediction on the target feature

self.display(2,f"learn_tree with {len(conditions)} features and
{len(data_subset)} examples")

split, partn = self.select_split(conditions, data_subset)

if split is None: # no split; return a point prediction
prediction = self.leaf_value(data_subset, self.target.frange)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

52

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74

76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92

93
94
95
96

7.4. Decision Tree Learning 169

self.display(2,f"leaf prediction for {len(data_subset)}
examples is {prediction}")

def leaf_fun(e):
return prediction

leaf_fun.__doc__ = str(prediction)

leaf_fun.num_leaves = 1

return leaf_fun

else: # a split succeeded

false_examples, true_examples = partn

rem_features = [fe for fe in conditions if fe != split]

self.display(2,"Splitting on",split.__doc "with examples
split”,

—_

len(true_examples),":",len(false_examples))
true_tree = self.learn_tree(rem_features, true_examples)
false_tree = self.learn_tree(rem_features,false_examples)
def fun(e):
if split(e):
return true_tree(e)
else:
return false_tree(e)
#fun = lambda e: true_tree(e) if split(e) else false_tree(e)
fun.__doc__ = (f"(if {split.__doc__} then {true_tree.__doc__}"
f" else {false_tree.__doc__})")
fun.num_leaves = true_tree.num_leaves + false_tree.num_leaves
return fun

learnDT.py — (continued)

def leaf_value(self, egs, domain):
return self.leaf_prediction((self.target(e) for e in egs), domain)

def select_split(self, conditions, data_subset):
"""finds best feature to split on.

conditions is a non-empty list of features.
returns feature, partition
where feature is an input feature with the smallest error as
judged by split_to_optimize or
feature==None if there are no splits that improve the error
partition is a pair (false_examples, true_examples) if feature is
not None
best_feat = None # best feature
best_error = float("inf") # infinity - more than any error
best_error = self.sum_losses(data_subset) - self.gamma
self.display(3,” no split has
error=",best_error,"with"” ,len(conditions),"conditions")
best_partition = None
for feat in conditions:
false_examples, true_examples = partition(data_subset,feat)
if

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

170 7. Supervised Machine Learning

min(len(false_examples),len(true_examples))>=self.min_child_weight:
97 err = (self.sum_losses(false_examples)
98 + self.sum_losses(true_examples))
99 self.display(3,"” split on",feat.__doc__,"has error=", err,
100 "splits
into”,len(true_examples),":",len(false_examples), "gamma=",self.gamma)
101 if err < best_error:
102 best_feat = feat
103 best_error=err
104 best_partition = false_examples, true_examples
105 self.display(2,"best split is on”, best_feat.__doc__,
106 "with err=" best_error)
107 return best_feat, best_partition
108
109 def sum_losses(self, data_subset):
110 """returns sum of losses for dataset (with no more splits)
111 There a single prediction for all leaves using leaf_prediction
112 It is evaluated using split_to_optimize
113 nen
114 prediction = self.leaf_value(data_subset, self.target.frange)
115 error = sum(self.split_to_optimize(prediction, self.target(e))
116 for e in data_subset)
117 return error
118
119 |def partition(data_subset,feature):
120 """partitions the data_subset by the feature""”
121 true_examples = []
122 false_examples = []
123 for example in data_subset:
124 if feature(example):
125 true_examples.append(example)
126 else:
127 false_examples.append(example)
128 return false_examples, true_examples

Test cases:

learnDT.py — (continued)

131 | from learnProblem import Data_set, Data_from_file

132

133 |def testDT(data, print_tree=True, selections = None, **tree_args):

134 """Prints errors and the trees for various evaluation criteria and ways
to select leaves.

135 e

136 if selections == None: # use selections suitable for target type

137 selections = Predict.select[data.target.ftypel

138 evaluation_criteria = Evaluate.all_criteria

139 print("Split Choice”,"Leaf Choice\t"”,"#leaves”,'\t'.join(ecrit.__doc__

140 for ecrit in

evaluation_criteria),sep="\t")
141 for crit in evaluation_criteria:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

142
143

144
145
146

147
148
149
150
151
152
153
154

155

156
157

158

159

7.4. Decision Tree Learning 171

for leaf in selections:
tree = DT_learner(data, split_to_optimize=crit,
leaf_prediction=leaf,
**xtree_args).learn()
print(crit.__doc__, leaf.__doc tree.num_leaves,
"\t".join("{:.7f}".format(data.evaluate_dataset(data.test,
tree, ecrit))
for ecrit in evaluation_criteria),sep="\t")

—_

if print_tree:
print(tree.__doc__)

#DT_learner.max_display_level = 4
if __name__ == "__main_
Choose one of the data files
#data=Data_from_file('data/SPECT.csv', target_index=0);
print("SPECT.csv")
#data=Data_from_file('data/iris.data', target_index=-1);
print("iris.data")
data = Data_from_file('data/carbool.csv', target_index=-1, seed=123)
#data = Data_from_file('data/mail_reading.csv', target_index=-1);
print("mail_reading.csv")
#data = Data_from_file('data/holiday.csv', has_header=True,
num_train=19, target_index=-1); print("holiday.csv")
testDT(data, print_tree=False)

",

Note that different runs may provide different values as they split the train-
ing and test sets differently. So if you have a hypothesis about what works
better, make sure it is true for different runs.

Exercise 7.6 The current algorithm does not have a very sophisticated stopping
criterion. What is the current stopping criterion? (Hint: you need to look at both
learn_tree and select _split.)

Exercise 7.7 Extend the current algorithm to include in the stopping criterion

(@) A minimum child size; don’t use a split if one of the children has fewer
elements that this.

(b) A depth-bound on the depth of the tree.

(c) An improvement bound such that a split is only carried out if error with the
split is better than the error without the split by at least the improvement
bound.

Which values for these parameters make the prediction errors on the test set the
smallest? Try it on more than one dataset.

Exercise 7.8 Without any input features, it is often better to include a pseudo-
count that is added to the counts from the training data. Modify the code so that
it includes a pseudo-count for the predictions. When evaluating a split, including
pseudo counts can make the split worse than no split. Does pruning with an im-
provement bound and pseudo-counts make the algorithm work better than with
an improvement bound by itself?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22

172 7. Supervised Machine Learning

Exercise 7.9 Some people have suggested using information gain (which is equiv-
alent to greedy optimization of log loss) as the measure of improvement when
building the tree, even in they want to have non-probabilistic predictions in the
final tree. Does this work better than myopically choosing the split that is best for
the evaluation criteria we will use to judge the final prediction?

7.5 Cross Validation and Parameter Tuning

To run the cross validation demo, in folder “aipython”,
load “learnCrossValidation.py”, using e.g., ipython -1
learnCrossValidation.py. Run the examples at the end to pro-
duce a graph like Figure 7.15. Note that different runs will produce
different graphs, so your graph will not look like the one in the
textbook. To try more examples, copy and paste the commented-out
commands at the bottom of that file. This requires Python 3 with
matplotlib.

The above decision tree overfits the data. One way to determine whether
the prediction is overfitting is by cross validation. The code below implements
k-fold cross validation, which can be used to choose the value of parameters
to best fit the training data. If we want to use parameter tuning to improve
predictions on a particular dataset, we can only use the training data (and not
the test data) to tune the parameter.

In k-fold cross validation, we partition the training set into k approximately
equal-sized folds (each fold is an enumeration of examples). For each fold, we
train on the other examples, and determine the error of the prediction on that
fold. For example, if there are 10 folds, we train on 90% of the data, and then
test on remaining 10% of the data. We do this 10 times, so that each example
gets used as a test set once, and in the training set 9 times.

The code below creates one copy of the data, and multiple views of the data.
For each fold, fold enumerates the examples in the fold, and fold_complement
enumerates the examples not in the fold.

learnCrossValidation.py — Cross Validation for Parameter Tuning

from learnProblem import Data_set, Data_from_file, Evaluate
from learnNoInputs import Predict

from learnDT import DT_learner

import matplotlib.pyplot as plt

import random

class K_fold_dataset(object):
def __init__(self, training_set, num_folds):
self.data = training_set.train.copy()
self.target = training_set.target
self.input_features = training_set.input_features
self.num_folds = num_folds

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44

45
46
47
48
49
50

52

53
54
55
56
57
58

7.5. Cross Validation and Parameter Tuning 173

self.conditions = training_set.conditions

random. shuffle(self.data)
self.fold_boundaries = [(len(self.data)*i)//num_folds
for i in range(@,num_folds+1)]

def fold(self, fold_num):
for i in range(self.fold_boundaries[fold_num],
self.fold_boundaries[fold_num+1]):
yield self.datali]

def fold_complement(self, fold_num):
for i in range(0,self.fold_boundaries[fold_num]):
yield self.datali]
for i in range(self.fold_boundaries[fold_num+1],len(self.data)):
yield self.datalil]

The validation error is the average error for each example, where we test on
each fold, and learn on the other folds.

learnCrossValidation.py — (continued)

def validation_error(self, learner, error_measure, xxother_params):
error = 0
try:
for i in range(self.num_folds):
predictor = learner(self,
train=list(self.fold_complement(i)),
**0other_params).learn()
error += sum(error_measure(predictor(e), self.target(e))
for e in self.fold(i))
except ValueError:
return float("inf") #infinity
return error/len(self.data)

The plot_error method plots the average error as a function of the mini-
mum number of examples in decision-tree search, both for the validation set
and for the test set. The error on the validation set can be used to tune the
parameter — choose the value of the parameter that minimizes the error. The
error on the test set cannot be used to tune the parameters; if it were to be used
this way it could not be used to test how well the method works on unseen
examples.

learnCrossValidation.py — (continued)

def plot_error(data, criterion=Evaluate.squared_loss,
leaf_prediction=Predict.empirical,
num_folds=5, maxx=None, xscale='linear'):
"""Plots the error on the validation set and the test set
with respect to settings of the minimum number of examples.
xscale should be 'log' or 'linear’

nnn

plt.ion()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78
79

80
81

82
83
84
85

174 7. Supervised Machine Learning

plt.xscale(xscale) # change between log and linear scale
plt.xlabel("min_child_weight")
plt.ylabel("average "+criterion.__doc__)
folded_data = K_fold_dataset(data, num_folds)
if maxx == None:
maxx = len(data.train)//2+1
verrors = [] # validation errors
terrors = [] # test set errors
for mcw in range(1,maxx):

verrors.append(folded_data.validation_error(DT_learner,criterion,leaf_prediction=leaf_predicti

min_child_weight=mcw))
tree = DT_learner(data, criterion, leaf_prediction=leaf_prediction,
min_child_weight=mcw).learn()
terrors.append(data.evaluate_dataset(data.test,tree,criterion))

plt.plot(range(1,maxx), verrors, ls='-' color='k',
label="validation for "+criterion.__doc__)
plt.plot(range(1,maxx), terrors, 1ls='--' color='k',

label="test set for "+criterion.__doc__)
plt.legend()
plt.draw()

The following produces the graphs of Figure 7.18 of Poole and Mackworth
[2023]

data = Data_from_file('data/SPECT.csv',target_index=0, seed=123)

plot_error(data, criterion=Evaluate.log_loss,
leaf_prediction=Predict.laplace)

#also try:
plot_error(data)
data = Data_from_file('data/carbool.csv', target_index=-1, seed=123)

Figure shows the average squared loss in the validation and test sets as
a function of the min_child_weight in the decision-tree learning algorithm.
(SPECT data with seed 12345 followed by plot_error(data)). Different seeds
will produce different graphs. The assumption behind cross validation is that
the parameter that minimizes the loss on the validation set, will be a good pa-
rameter for the test set.

Note that different runs for the same data will have the same test error, but
different validation error. If you rerun the Data_from_file, with a different
seed, you will get the new test and training sets, and so the graph will change.

Exercise 7.10 Change the error plot so that it can evaluate the stopping criteria
of the exercise of Section[7.6l Which criteria makes the most difference?

7.6 Linear Regression and Classification

Here is a stochastic gradient descent searcher for linear regression and classifi-
cation.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

7.6. Linear Regression and Classification 175

—— validation for squared loss

0.22 1 —=—=- test set for squared loss
0.20 A

&

o

el

g

5 0.18 1

3

o

(1]

(]

(o))

o

5 0.16

>

©
0.14

min_child_weight

Figure 7.2: plot_error for SPECT dataset

learnLinear.py — Linear Regression and Classification

from learnProblem import Learner
import random, math

class Linear_learner(Learner):
def __init__(self, dataset, train=None,
learning_rate=0.1, max_init = 0.2,
squashed=True, batch_size=10):
"""Creates a gradient descent searcher for a linear classifier.
The main learning is carried out by learn()

dataset provides the target and the input features
train provides a subset of the training data to use
number_iterations is the default number of steps of gradient descent
learning_rate is the gradient descent step size
max_init is the maximum absolute value of the initial weights
squashed specifies whether the output is a squashed linear function
self.dataset = dataset
self.target = dataset.target
if train==None:

self.train = self.dataset.train
else:

self.train = train

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

34
35
36
37

38
39

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68
69
70
71
72
73

176 7. Supervised Machine Learning

self.learning_rate = learning_rate
self.squashed = squashed
self.batch_size = batch_size
self.input_features = [one]+dataset.input_features # one is defined
below
self.weights = {feat:random.uniform(-max_init,max_init)
for feat in self.input_features}

predictor predicts the value of an example from the current parameter set-
tings. predictor_string gives a string representation of the predictor.

learnLinear.py — (continued)

def predictor(self,e):
"""returns the prediction of the learner on example e
linpred = sum(wxf(e) for f,w in self.weights.items())
if self.squashed:
return sigmoid(linpred)
else:
return linpred

nnn

def predictor_string(self, sig_dig=3):
"""returns the doc string for the current prediction function
sig_dig is the number of significant digits in the numbers”""
doc = "+".join(str(round(val,sig_dig))+"x"+feat.__doc__
for feat,val in self.weights.items())
if self.squashed:
return "sigmoid("+ doc+")"
else:
return doc

learn is the main algorithm of the learner. It does num_iter steps of stochastic
gradient descent. Only the number of iterations is specified; the other parame-
ters it gets from the class.

learnLinear.py — (continued)

def learn(self,num_iter=100):
batch_size = min(self.batch_size, len(self.train))
d = {feat:0 for feat in self.weights}
for it in range(num_iter):
self.display(2,"prediction=",self.predictor_string())
for e in random.sample(self.train, batch_size):
error = self.predictor(e) - self.target(e)
update = self.learning_rate*error
for feat in self.weights:
d[feat] += updatexfeat(e)
for feat in self.weights:
self.weights[feat] -= d[feat]
d[feat]=0
return self.predictor

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

7.6. Linear Regression and Classification 177

one is a function that always returns 1. This is used for one of the input prop-
erties.

75
76
77

79
80
81
82

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

101
102
103

learnLinear.py — (continued)

def one(e):

H-I n
return 1

sigmoid(x) is the function

1
1+e X

The inverse of sigmoid is the logit function

learnLinear.py — (continued)

def sigmoid(x):

return 1/(1+math.exp(-x))

def logit(x):

return -math.log(1/x-1)

softmax([xo, X2, ...]) returns [vg, vy, ...] where
__exp(xi)
V= =~
Y exp(x;)

learnLinear.py — (continued)

def softmax(xs, domain=None):

nnn

xs is a list of values, and
domain is the domain (a list) or None if the list should be returned
returns a distribution over the domain (a dict)
m = max(xs) # use of m prevents overflow (and all values underflowing)
exps = [math.exp(x-m) for x in xs]
s = sum(exps)
if domain:
return {d:v/s for (d,v) in zip(domain,exps)?}
else:
return [v/s for v in exps]

def indicator(v, domain):

return [1 if v==dv else @ for dv in domain]

The following tests the learner on a datasets. Uncomment the other datasets

for different examples.

learnLinear.py — (continued)

from learnProblem import Data_set, Data_from_file, Evaluate
from learnProblem import Evaluate
import matplotlib.pyplot as plt

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

104
105
106
107
108
109
110
111
112
113

114

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148

178 7. Supervised Machine Learning

def test(*xargs):
data = Data_from_file('data/SPECT.csv', target_index=0)
data = Data_from_file('data/mail_reading.csv', target_index=-1)
data = Data_from_file('data/carbool.csv', target_index=-1)
learner = Linear_learner(data,**args)
learner.learn()
print("function learned is"”, learner.predictor_string())
for ecrit in Evaluate.all_criteria:
test_error = data.evaluate_dataset(data.test, learner.predictor,
ecrit)
print(” Average", ecrit.__doc__, "is", test_error)

The following plots the errors on the training and test sets as a function of
the number of steps of gradient descent.

learnLinear.py — (continued)

def plot_steps(learner=None,
data = None,
criterion=Evaluate.squared_loss,
step=1,
num_steps=1000,
log_scale=True,
legend_label=""):
plots the training and test error for a learner.
data is the
learner_class is the class of the learning algorithm
criterion gives the evaluation criterion plotted on the y-axis
step specifies how many steps are run for each point on the plot
num_steps is the number of points to plot

nnn

if legend_label != "": legend_label+=" "
plt.ion()
plt.xlabel("step")
plt.ylabel("Average "+criterion.__doc__)
if log_scale:
plt.xscale('log') #plt.semilogx() #Makes a log scale
else:
plt.xscale('linear")
if data is None:
data = Data_from_file('data/holiday.csv', has_header=True,
num_train=19, target_index=-1)
#data = Data_from_file('data/SPECT.csv', target_index=0)
data = Data_from_file('data/mail_reading.csv', target_index=-1)
data = Data_from_file('data/carbool.csv', target_index=-1)
#random.seed(None) # reset seed
if learner is None:
learner = Linear_learner(data)
train_errors = []

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

7.6. Linear Regression and Classification 179

149 test_errors = []

150 for i in range(1,num_steps+1,step):

151 test_errors.append(data.evaluate_dataset(data. test,
learner.predictor, criterion))

152 train_errors.append(data.evaluate_dataset(data.train,
learner.predictor, criterion))

153 learner.display(2, "Train error:",train_errors[-1],

154 "Test error:",test_errors[-1])

155 learner.learn(num_iter=step)

156 plt.plot(range(1,num_steps+1,step),train_errors,ls="'-"',1label=1egend_label+"training")

157 plt.plot(range(1,num_steps+1,step),test_errors,ls='--' label=legend_label+"test")

158 plt.legend()

159 plt.draw()

160 learner.display(1, "Train error:",train_errors[-1],

161 "Test error:”,test_errors[-1])

162

163 |if __name__ == "__main__":

164 test()

165

166 |# This generates the figure

167 |# from learnProblem import Data_set_augmented, prod_feat

168 |# data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0,

seed=123)

169 |# dataplus = Data_set_augmented(data, []1, [prod_feat])

170 |# plot_steps(data=data, num_steps=1000)

171 |# plot_steps(data=dataplus, num_steps=1000) # warning very slow

Figure[7.3|shows the result of plot_steps(data=data, num_steps=1000) in
the code above. What would you expect to happen with the augmented data
(with extra features)? Hint: think about underfitting and overfitting.

Exercise 7.11 In Figure the log loss is very unstable when there are over 20
steps. Hypothesize why this occurs. [Hint: when does gradient descent become
unstable?] Test your hypothesis by running with different hyperparameters.

Exercise 7.12 The squashed learner only makes predictions in the range (0, 1).
If the output values are {1,2,3,4} there is no use predicting less than 1 or greater
than 4. Change the squashed learner so that it can learn values in the range (1,4).
Test it on the file 'data/car.csv'.

The following plots the prediction as a function of the number of steps of
gradient descent. We first define a version of range that allows for real numbers
(integers and floats).

learnLinear.py — (continued)

172 | def arange(start,stop,step):

173 """returns enumeration of values in the range [start,stop) separated by
step.

174 like the built-in range(start,stop,step) but allows for integers and
floats.

175 Note that rounding errors are expected with real numbers. (or use
numpy . arange)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

180

7. Supervised Machine Learning

1.14

1.0

0.9 A

0.8 1

0.7 A

Average log loss (bits)

0.6 1

0.5 A

0.4

—— training
test

100 10! 102 103
step

Figure 7.3: plot_steps for SPECT dataset

nnn

while start<stop:

yield
start

start
+= step

def plot_prediction(data,

plt.ion()

learner = None,

minx = @,

maxx = 5,

step_size = 0.01, # for plotting
label = "function”):

plt.xlabel("x")
plt.ylabel("y")
if learner is None:
learner = Linear_learner(data, squashed=False)
learner.learning_rate=0.001
learner.learn(100)
learner.learning_rate=0.0001
learner.learn(1000)
learner.learning_rate=0.00001
learner.learn(10000)
learner.display(1, "function learned is”, learner.predictor_string(),

"error=",data.evaluate_dataset(data.train, learner.predictor,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

200

201
202

203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225

226
227
228
229
230
231
232

233
234
235

236
237
238
239
240
241

7.6. Linear Regression and Classification 181

Evaluate.squared_loss))
plt.plot([e[@] for e in data.train],[e[-1] for e in
data.train],"bo",label="data")
plt.plot(list(arange(minx,maxx,step_size)),[learner.predictor([x])
for x in
arange(minx,maxx,step_size)],
label=1abel)
plt.legend()
plt.draw()

learnLinear.py — (continued)

from learnProblem import Data_set_augmented, power_feat
def plot_polynomials(data,
learner_class = Linear_learner,
max_degree = 5,
minx = 0,
maxx = 5,
num_iter = 1000000,
learning_rate = 0.00001,
step_size = 0.01, # for plotting
):
plt.ion()
plt.xlabel("x")
plt.ylabel("y")
plt.plot([e[@] for e in data.train],[e[-1] for e in
data.train], "ko",label="data")
x_values = list(arange(minx,maxx,step_size))
line_styles = ['-",'-=",'=.",":"']
colors = ['0.5','k"','k"','k", 'k"]
for degree in range(max_degree):
data_aug = Data_set_augmented(data, [power_feat(n) for n in
range(1,degree+1)1],
include_orig=False)
learner = learner_class(data_aug, squashed=False)
learner.learning_rate = learning_rate
learner.learn(num_iter)
learner.display(1,"For degree”,degree,
"function learned is"”, learner.predictor_string(),
"error=",data.evaluate_dataset(data.train,
learner.predictor, Evaluate.squared_loss))
ls = line_styles[degree % len(line_styles)]
col = colors[degree % len(colors)]
plt.plot(x_values,[learner.predictor([x]) for x in x_values],
linestyle=ls, color=col,
label="degree="+str(degree))
plt.legend(loc="upper left')
plt.draw()

Try:
data@ = Data_from_file('data/simp_regr.csv', prob_test=0, one_hot=False,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

242
243
244
245
246

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38

182 7. Supervised Machine Learning

target_index=-1)
plot_prediction(data®)
plot_polynomials(data®)
What if the step size was bigger?
#datam = Data_from_file('data/mail_reading.csv', target_index=-1)
#plot_prediction(datam)

Exercise 7.13 For each of the polynomial functions learned: What is the pre-
diction as x gets larger (x — o0). What is the prediction as x gets more negative
(x = —o0).

7.7 Boosting

The following code implements functional gradient boosting for regression.

A Boosted dataset is created from a base dataset by subtracting the pre-
diction of the offset function from each example. This does not save the new
dataset, but generates it as needed. The amount of space used is constant, in-
dependent on the size of the dataset.

learnBoosting.py — Functional Gradient Boosting

from learnProblem import Data_set, Learner, Evaluate
from learnNoInputs import Predict

from learnLinear import sigmoid

import statistics

import random

class Boosted_dataset(Data_set):
def __init__(self, base_dataset, offset_fun, subsample=1.0):

"""new dataset which is like base_dataset,

but offset_fun(e) is subtracted from the target of each example e
self.base_dataset = base_dataset
self.offset_fun = offset_fun
self.train =

random. sample(base_dataset.train, int(subsample*len(base_dataset.train)))

self.test = base_dataset.test
#Data_set.__init__(self, base_dataset.train, base_dataset.test,
base_dataset.prob_test, base_dataset.target_index)

#tdef create_features(self):
"""creates new features - called at end of Data_set.init()
defines a new target
self.input_features = self.base_dataset.input_features
def newout(e):

return self.base_dataset.target(e) - self.offset_fun(e)
newout.frange = self.base_dataset.target.frange
newout.ftype = self.infer_type(newout.frange)
self.target = newout

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

39

41
42

44
45
46
47
48
49
50
51

52
53
54
55

56

57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72

73

74

7.7. Boosting 183

def conditions(self, *args, colsample_bytree=0.5, **nargs):
conds = self.base_dataset.conditions(*args, **nargs)
return random.sample(conds, int(colsample_bytreexlen(conds)))

A boosting learner takes in a dataset and a base learner, and returns a new
predictor. The base learner, takes a dataset, and returns a Learner object.

learnBoosting.py — (continued)

class Boosting_learner(Learner):
def __init__(self, dataset, base_learner_class, subsample=0.8):

self.dataset = dataset

self.base_learner_class = base_learner_class

self.subsample = subsample

mean = sum(self.dataset.target(e)

for e in self.dataset.train)/len(self.dataset.train)

self.predictor = lambda e:mean # function that returns mean for
each example

self.predictor.__doc__ = "lambda e:"+str(mean)

self.offsets = [self.predictor] # list of base learners

self.predictors = [self.predictor] # list of predictors

self.errors = [data.evaluate_dataset(data.test, self.predictor,
Evaluate.squared_loss)]

self.display(1,"Predict mean test set mean squared loss=",
self.errors[0])

def learn(self, num_ensembles=10):
"""adds num_ensemble learners to the ensemble.
returns a new predictor.
for i in range(num_ensembles):
train_subset = Boosted_dataset(self.dataset, self.predictor,
subsample=self.subsample)
learner = self.base_learner_class(train_subset)
new_offset = learner.learn()
self.offsets.append(new_offset)
def new_pred(e, old_pred=self.predictor, off=new_offset):
return old_pred(e)+off(e)
self.predictor = new_pred
self.predictors.append(new_pred)
self.errors.append(data.evaluate_dataset(data. test,
self.predictor, Evaluate.squared_loss))
self.display(1,f"Iteration {len(self.offsets)-1},treesize =
{new_offset.num_leaves}. mean squared
loss={self.errors[-11}")
return self.predictor

For testing, sp_DT learner returns a learner that predicts the mean at the leaves
and is evaluated using squared loss. It can also take arguments to change the
default arguments for the trees.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92
93
94

95

96
97
98
99
100
101
102

103
104
105
106

107
108
109
110
111
112
113

114
115

184 7. Supervised Machine Learning

learnBoosting.py — (continued)

Testing

from learnDT import DT_learner
from learnProblem import Data_set, Data_from_file

def sp_DT_learner(split_to_optimize=Evaluate.squared_loss,
leaf_prediction=Predict.mean,**nargs):
"""Creates a learner with different default arguments replaced by
**nargs
def new_learner(dataset):
return DT_learner(dataset,split_to_optimize=split_to_optimize,
leaf_prediction=leaf_prediction, *xnargs)
return new_learner

#data = Data_from_file('data/car.csv', target_index=-1) regression

data = Data_from_file('data/student/student-mat-nq.csv',
separator=";', has_header=True, target_index=-1,seed=13,include_only=1list(range(30))+[32])
#2.0537973790924946

#data = Data_from_file('data/SPECT.csv', target_index=0, seed=62) #123)

#data = Data_from_file('data/mail_reading.csv', target_index=-1)

#data = Data_from_file('data/holiday.csv', has_header=True, num_train=19,
target_index=-1)

#learner1@ = Boosting_learner(data,
sp_DT_learner(split_to_optimize=Evaluate.squared_loss,
leaf_prediction=Predict.mean, min_child_weight=10))

#learner7 = Boosting_learner(data, sp_DT_learner(0.7))

#learner5 = Boosting_learner(data, sp_DT_learner(0.5))

#predictor9 =learner9.learn(10)

#for i in learner9.offsets: print(i.__doc__)

import matplotlib.pyplot as plt

def plot_boosting_trees(data, steps=10, mcws=[30,20,20,10], gammas=
[100,200,300,500]):
to reduce clutter uncomment one of following two lines
#mcws=[10]
#gammas=[200]
learners = [(mcw, gamma, Boosting_learner(data,
sp_DT_learner(min_child_weight=mcw, gamma=gamma)))
for gamma in gammas for mcw in mcws
]
plt.ion()
plt.xscale('linear') # change between log and linear scale
plt.xlabel("number of trees"”)
plt.ylabel("mean squared loss")
markers = (m+c for c in ['k','g','r','b','m','c','y'] for m in
L=, == =0 D
for (mcw,gamma,learner) in learners:
data.display(1,f"min_child_weight={mcw}, gamma={gamma}")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

116
117
118
119
120
121
122
123

125
126

127

128
129
130
131
132
133
134
135

136

137

138

139

7.7. Boosting 185

learner.learn(steps)
plt.plot(range(steps+1), learner.errors, next(markers),
label=f"min_child_weight={mcw}, gamma={gammal}")
plt.legend()
plt.draw()

plot_boosting_trees(data,mcws=[20], gammas= [100,200,300,500])
plot_boosting_trees(data,mcws=[30,20,20,10], gammas= [100])

Exercise 7.14 For a particular dataset, suggest good values for min_child_weight
and gamma. How stable are these to different random choices that are made (e.g.,
in the training-test split)? Try to explain why these are good settings.

7.7.1 Gradient Tree Boosting

The following implements gradient Boosted trees for classification. If you want
to use this gradient tree boosting for a real problem, we recommend using
XGBoost [Chen and Guestrin, 2016] or LightGBM [Ke, Meng, Finley, Wang,
Chen, Ma, Ye, and Liu, 2017].

GTB_learner subclasses DT_learner. The method learn_tree is used un-
changed. DT_learner assumes that the value at the leaf is the prediction of the
leaf, thus leaf_value needs to be overridden. It also assumes that all nodes
at a leaf have the same prediction, but in GBT the elements of a leaf can have
different values, depending on the previous trees. Thus sum_losses also needs
to be overridden.

learnBoosting.py — (continued)

class GTB_learner(DT_learner):
def __init__(self, dataset, number_trees, lambda_reg=1, gamma=0,
**xdtargs):
DT_learner.__init__(self, dataset,
split_to_optimize=Evaluate.log_loss, **dtargs)
self.number_trees = number_trees
self.lambda_reg = lambda_reg
self.gamma = gamma
self.trees = []

def learn(self):
for i in range(self.number_trees):
tree =
self.learn_tree(self.dataset.conditions(self.max_num_cuts),
self.train)
self.trees.append(tree)
self.display(1,f"""Iteration {i} treesize = {tree.num_leaves}
train logloss={
self.dataset.evaluate_dataset(self.dataset.train,
self.gtb_predictor, Evaluate.log_loss)
} test logloss={

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

186 7. Supervised Machine Learning

140 self.dataset.evaluate_dataset(self.dataset. test,
self.gtb_predictor, Evaluate.log_loss)}""")

141 return self.gtb_predictor

142

143 def gtb_predictor(self, example, extra=0):

144 """prediction for example,

145 extras is an extra contribution for this example being considered

146 o

147 return sigmoid(sum(t(example) for t in self.trees)+extra)

148

149 def leaf_value(self, egs, domain=[0,1]):

150 """value at the leaves for examples egs

151 domain argument is ignored"""

152 pred_acts = [(self.gtb_predictor(e),self.target(e)) for e in egs]

153 return sum(a-p for (p,a) in pred_acts) /(sum(p*(1-p) for (p,a) in
pred_acts)+self.lambda_reg)

154

155

156 def sum_losses(self, data_subset):

157 """returns sum of losses for dataset (assuming a leaf is formed
with no more splits)

158 e

159 leaf_val = self.leaf_value(data_subset)

160 error = sum(Evaluate.log_loss(self.gtb_predictor(e,leaf_val),
self.target(e))

161 for e in data_subset) + self.gamma

162 return error

Testing

learnBoosting.py — (continued)

164 |# data = Data_from_file('data/carbool.csv', target_index=-1, seed=123)
165 |# gtb_learner = GTB_learner(data, 10)
166 |# gtb_learner.learn()

Exercise 7.15 Find better hyperparameter settings than the default ones. Com-
pare prediction error with other methods for Boolean datasets.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11

12
13
14
15

Chapter 8

Neural Networks and Deep
Learning

Warning: this is not meant to be an efficient implementation of deep learning.
If you want to do serious machine learning on meduim-sized or large data,
we recommend Keras (https://keras.io) [Chollet, 2021] or PyTorch (https:
//pytorch.org), which are very efficient, particularly on GPUs. They are, how-
ever, black boxes. The AIPython neural network code should be seen like a car
engine made of glass; you can see exactly how it works, even if it is not fast.

We have followed the naming conventions of Keras for the parameters: any
parameters that are the same as in Keras have the same names.

8.1 Layers

A neural network is built from layers. In AIPython, unlike Keras and PyTorch,
activation functions are treated as separate layers, which makes them more
modular and the code more readable.

This provides a modular implementation of layers. Layers can easily be
stacked in many configurations. A layer needs to implement a function to com-
pute the output values from the inputs, a way to back-propagate the error, and
perhaps update its parameters.

learnNN.py — Neural Network Learning

from learnProblem import Learner, Data_set, Data_from_file,
Data_from_files, Evaluate

from learnLinear import sigmoid, one, softmax, indicator

import random, math, time

class Layer(object):

187

https://keras.io
https://pytorch.org
https://pytorch.org

16
17

18
19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38

39

40
41

42

43
44
45
46
47
48
49
50

188 8. Neural Networks and Deep Learning

def __init__(self, nn, num_outputs=None):

"""Given a list of inputs, outputs will produce a list of length
num_outputs.

nn is the neural network this layer is part of

num outputs is the number of outputs for this layer.

self.nn = nn

self.num_inputs = nn.num_outputs # output of nn is the input to
this layer

if num_outputs:
self.num_outputs = num_outputs

else:
self.num_outputs = nn.num_outputs # same as the inputs

def output_values(self,input_values, training=False):
"""Return the outputs for this layer for the given input values.
input_values is a list of the inputs to this layer (of length
num_inputs)
returns a list of length self.num_outputs.
It can act differently when training and when predicting.

nnn

raise NotImplementedError("output_values”) # abstract method

def backprop(self,errors):
"""Backpropagate the errors on the outputs
errors is a list of errors for the outputs (of length
self.num_outputs).
Returns the errors for the inputs to this layer (of length
self.num_inputs).

You can assume that this is only called after corresponding
output_values,
which can remember information information required for the
back-propagation.

nnn

raise NotImplementedError("backprop”) # abstract method

def update(self):
"""updates parameters after a batch.
overridden by layers that have parameters

nnn

pass

8.1.1 Linear Layer

A linear layer maintains an array of weights. self.weights[o][i] is the weight
between input i and output 0. 1 is added as an extra value to the end of the
inputs. The default initialization is the Glorot uniform initializer [Glorot and
Bengio, 2010, which is the default in Keras. An alternative is to provide a

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97

8.1. Layers 189

limit, in which case the values are selected uniformly in the range [—limit, limit].
Keras treats the bias separately, and by default initializes to zero.

learnNN.py — (continued)

class Linear_complete_layer(Layer):
"""3 completely connected layer
def __init__(self, nn, num_outputs, limit=None):
"""A completely connected linear layer.
nn is a neural network that the inputs come from
num_outputs is the number of outputs

the random initialization of parameters is in range [-limit,limit]

nnn

nnn

Layer.__init__(self, nn, num_outputs)
if limit is None:
limit =math.sqrt(6/(self.num_inputs+self.num_outputs))
self.weights[o][i] is the weight between input i and output o
self.weights = [[random.uniform(-1limit, limit)
if inf < self.num_inputs else @
for inf in range(self.num_inputs+1)]
for outf in range(self.num_outputs)]
self.delta = [[@ for inf in range(self.num_inputs+1)]
for outf in range(self.num_outputs)]

def output_values(self,input_values, training=False):
"""Returns the outputs for the input values.
It remembers the values for the backprop.

Note in self.weights there is a weight list for every output,
so wts in self.weights loops over the outputs.
The bias is the *lastx value of each list in self.weights.
self.inputs = input_values + [1]
return [sum(wxval for (w,val) in zip(wts,self.inputs))

for wts in self.weights]

def backprop(self,errors):
"""Backpropagate the errors, updating the weights and returning the
error in its inputs.
input_errors = [@]x(self.num_inputs+1)
for out in range(self.num_outputs):
for inp in range(self.num_inputs+1):
input_errors[inp] += self.weights[out][inp] * errors[out]
self.deltalout][inp] += self.inputs[inp] * errors[out]
return input_errors[:-1] # remove the error for the "1"

def update(self):
"""updates parameters after a batch"""
batch_step_size = self.nn.learning_rate / self.nn.batch_size
for out in range(self.num_outputs):
for inp in range(self.num_inputs+1):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

190 8. Neural Networks and Deep Learning

98 self.weights[out][inp] -= batch_step_size *
self.deltalout][inp]
99 self.deltalout][inp] = @

8.1.2 RelLU Layer
The standard activation function for hidden nodes is the ReLU.

learnNN.py — (continued)

101 | class RelLU_layer(Layer):

102 """Rectified linear unit (ReLU) f(z) = max(Q, z).

103 The number of outputs is equal to the number of inputs.

104 e

105 def __init__(self, nn):

106 Layer.__init__(self, nn)

107

108 def output_values(self, input_values, training=False):

109 """Returns the outputs for the input values.

110 It remembers the input values for the backprop.

111 men

112 self.input_values = input_values

113 self.outputs= [max(@,inp) for inp in input_values]

114 return self.outputs

115

116 def backprop(self,errors):

117 """Returns the derivative of the errors”"”

118 return [e if inp>0 else @ for e,inp in zip(errors,
self.input_values)]

8.1.3 Sigmoid Layer

One of the old standards for the activation function for hidden layers is the
sigmoid. It is included here to experiment with.

learnNN.py — (continued)

120 | class Sigmoid_layer(Layer):

121 """sigmoids of the inputs.

122 The number of outputs is equal to the number of inputs.
123 Each output is the sigmoid of its corresponding input.
124 e

125 def __init__(self, nn):

126 Layer.__init__(self, nn)

127

128 def output_values(self, input_values, training=False):
129 """Returns the outputs for the input values.

130 It remembers the output values for the backprop.

131 nn

132 self.outputs= [sigmoid(inp) for inp in input_values]
133 return self.outputs

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

134
135
136
137

139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176

8.2. Feedforward Networks 191

def backprop(self,errors):
"""Returns the derivative of the errors
return [exout*(1-out) for e,out in zip(errors, self.outputs)]

nnn

8.2 Feedforward Networks

learnNN.py — (continued)

class NN(Learner):
def __init__(self, dataset, validation_proportion = 0.1,
learning_rate=0.001):
"""Creates a neural network for a dataset,
layers is the list of layers
self.dataset = dataset
self.output_type = dataset.target.ftype
self.learning_rate = learning_rate
self.input_features = dataset.input_features
self.num_outputs = len(self.input_features)
validation_num = int(len(self.dataset.train)*validation_proportion)
if validation_num > 0:
random. shuffle(self.dataset.train)
self.validation_set = self.dataset.train[-validation_num:]
self.training_set = self.dataset.train[:-validation_num]
else:
self.validation_set = []
self.training_set = self.dataset.train
self.layers = []
self.bn = @ # number of batches run

def add_layer(self,layer):
"""add a layer to the network.
Each layer gets number of inputs from the previous layers outputs.
self.layers.append(layer)
self.num_outputs = layer.num_outputs

def predictor(self,ex):
"""Predicts the value of the first output for example ex.
values = [f(ex) for f in self.input_features]
for layer in self.layers:
values = layer.output_values(values)
return sigmoid(values[@]) if self.output_type =="boolean” \
else softmax(values, self.dataset.target.frange) if
self.output_type == "categorical” \
else values[@]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

192 8. Neural Networks and Deep Learning

177 def predictor_string(self):
178 return "not implemented”

The learn method learns the parameters of a network.

learnNN.py — (continued)

180 def learn(self, epochs=5, batch_size=32, num_iter = None,
report_each=10):
181 """Learns parameters for a neural network using stochastic gradient
decent.
182 epochs is the number of times through the data (on average)
183 batch_size is the maximum size of each batch
184 num_iter is the number of iterations over the batches
185 - overrides epochs if provided (allows for fractions of epochs)
186 report_each means give the errors after each multiple of that
iterations
187 e
188 self.batch_size = min(batch_size, len(self.training_set)) # don't
have batches bigger than training size
189 if num_iter is None:
190 num_iter = (epochs * len(self.training_set)) // self.batch_size
191 #self.display(@, "Batch\t","\t".join(criterion.__doc__ for criterion
in Evaluate.all_criteria))
192 for i in range(num_iter):
193 batch = random.sample(self.training_set, self.batch_size)
194 for e in batch:
195 # compute all outputs
196 values = [f(e) for f in self.input_features]
197 for layer in self.layers:
198 values = layer.output_values(values, training=True)
199 # backpropagate
200 predicted = [sigmoid(v) for v in values] if self.output_type
== "boolean"\
201 else softmax(values) if self.output_type ==
"categorical”\
202 else values
203 actuals = indicator(self.dataset.target(e),
self.dataset.target.frange) \
204 if self.output_type == "categorical”\
205 else [self.dataset.target(e)]
206 errors = [pred-obsd for (obsd,pred) in
zip(actuals,predicted)]
207 for layer in reversed(self.layers):
208 errors = layer.backprop(errors)
209 # Update all parameters in batch
210 for layer in self.layers:
211 layer.update()
212 self.bn+=1
213 if (i+1)%report_each==0:
214 self.display(@,self.bn,"\t",
215 "\t\t".join("{:.4f}".format(

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

8.3. Improved Optimization 193

216 self.dataset.evaluate_dataset(self.validation_set,
self.predictor, criterion))

217 for criterion in Evaluate.all_criteria),
sep:ll ”)

8.3 Improved Optimization

8.3.1 Momentum

learnNN.py — (continued)

219 | class Linear_complete_layer_momentum(Linear_complete_layer):
220 """3 completely connected layer”"""
221 def __init__(self, nn, num_outputs, limit=None, alpha=0.9, epsilon =
1e-07, vel0=0):
222 """A completely connected linear layer.
223 nn is a neural network that the inputs come from
224 num_outputs is the number of outputs
225 max_init is the maximum value for random initialization of
parameters
226 vel@ is the initial velocity for each parameter
227 e
228 Linear_complete_layer.__init__(self, nn, num_outputs, limit=limit)
229 # self.weights[o][i] is the weight between input i and output o
230 self.velocity = [[vel@ for inf in range(self.num_inputs+1)]
231 for outf in range(self.num_outputs)]
232 self.alpha = alpha
233 self.epsilon = epsilon
234
235 def update(self):
236 """updates parameters after a batch”""
237 batch_step_size = self.nn.learning_rate / self.nn.batch_size
238 for out in range(self.num_outputs):
239 for inp in range(self.num_inputs+1):
240 self.velocity[out][inp] = self.alpha*self.velocity[out][inp]
- batch_step_size * self.deltalout][inp]
241 self.weights[out][inp] += self.velocity[out][inp]
242 self.deltalout][inp] = 0

8.3.2 RMS-Prop

learnNN.py — (continued)

244 |class Linear_complete_layer_RMS_Prop(Linear_complete_layer):

245 """3 completely connected layer”"""

246 def __init__(self, nn, num_outputs, limit=None, rho=0.9, epsilon =
1e-07):

247 """A completely connected linear layer.

248 nn is a neural network that the inputs come from

249 num_outputs is the number of outputs

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

250

251
252
253
254
255
256
257
258
259
260
261
262
263
264

265

266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

194 8. Neural Networks and Deep Learning

max_init is the maximum value for random initialization of

parameters
Linear_complete_layer.__init__(self, nn, num_outputs, limit=limit)
self.weights[o][i] is the weight between input i and output o
self.ms = [[@ for inf in range(self.num_inputs+1)]

for outf in range(self.num_outputs)]

self.rho = rho
self.epsilon = epsilon

def update(self):
"""updates parameters after a batch""”
for out in range(self.num_outputs):
for inp in range(self.num_inputs+1):
gradient = self.deltalout][inp] / self.nn.batch_size
self.ms[out][inp] = self.rhoxself.ms[out][inp]l+ (1-self.rho)
* gradient#**2
self.weights[out][inp] -=
self.nn.learning_rate/(self.ms[out][inpl+self.epsilon)**@.5
* gradient
self.deltalout][inp] = @

Exercise 8.1 Implement Adam [see Section 8.2.3 of Poole and Mackworth| 2023].
The implementation is slightly more complex than RMS-Prop. Try it first with the
parameter settings of Keras, as reported by Poole and Mackworth! [2023]. Does it
matter if epsilon is inside or outside the square root? How sensitive is the perfor-
mance to the parameter settings?

8.4 Dropout

Dropout is implemented as a layer.

learnNN.py — (continued)

from utilities import flip
class Dropout_layer(Layer):
"""Dropout layer

nnn

def __init__(self, nn, rate=0):

nnn

rate is fraction of the input units to drop. @ =< rate < 1

nnn

self.rate = rate
Layer.__init__(self, nn)

def output_values(self, input_values, training=False):
"""Returns the outputs for the input values.
It remembers the input values and mask for the backprop.

nnn

if training:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

285
286
287
288
289
290
291
292
293
294

296
297
298

299

300

301

302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320

8.5. Examples 195

scaling = 1/(1-self.rate)
self.mask = [0 if flip(self.rate) else 1
for _ in input_values]
return [xxyxscaling for (x,y) in zip(input_values, self.mask)]
else:

return input_values

def backprop(self,errors):
"""Returns the derivative of the errors
return [xxy for (x,y) in zip(errors, self.mask)]

nnn

8.5 Examples

The following constructs some neural networks (most with one hidden layer).
The output is assumed to be Boolean or Real. If it is categorical, the final layer
should have the same number of outputs as the number of categories (so it can
use a softmax).

learnNN.py — (continued)

#data = Data_from_file('data/mail_reading.csv', target_index=-1)

#data = Data_from_file('data/mail_reading_consis.csv', target_index=-1)

data = Data_from_file('data/SPECT.csv', prob_test=0.3, target_index=0,
seed=12345)

#data = Data_from_file('data/iris.data', prob_test=0.2, target_index=-1) #
150 examples approx 120 test + 30 test

#data = Data_from_file('data/if_x_then_y_else_z.csv', num_train=8,
target_index=-1) # not linearly sep

#data = Data_from_file('data/holiday.csv', target_index=-1) #,
num_train=19)

#data = Data_from_file('data/processed.cleveland.data', target_index=-1)

#random. seed(None)

nn3 is has a single hidden layer of width 3

nn3 = NN(data, validation_proportion = @)

nn3.add_layer(Linear_complete_layer(nn3,3))

#nn3.add_layer(Sigmoid_layer(nn3))

nn3.add_layer (ReLU_layer(nn3))

nn3.add_layer(Linear_complete_layer(nn3,1)) # when using
output_type="boolean”

#nn3.learn(epochs = 100)

nn3do is like nn3 but with dropout on the hidden layer
nn3do = NN(data, validation_proportion = @)
nn3do.add_layer(Linear_complete_layer(nn3do,3))
#nn3.add_layer(Sigmoid_layer(nn3)) # comment this or the next
nn3do.add_layer(ReLU_layer(nn3do))
nn3do.add_layer(Dropout_layer(nn3do, rate=0.5))
nn3do.add_layer(Linear_complete_layer(nn3do, 1))
#nn3do.learn(epochs = 100)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

196 8. Neural Networks and Deep Learning

321
322 |# nn3_rmsp is like nn3 but uses RMS prop

323 |nn3_rmsp = NN(data, validation_proportion = 0)

324 |nn3_rmsp.add_layer(Linear_complete_layer_RMS_Prop(nn3_rmsp,3))

325 |#nn3_rmsp.add_layer(Sigmoid_layer(nn3_rmsp)) # comment this or the next
326 |nn3_rmsp.add_layer(ReLU_layer(nn3_rmsp))

327 |nn3_rmsp.add_layer(Linear_complete_layer_RMS_Prop(nn3_rmsp,1))

328 |#nn3_rmsp.learn(epochs = 100)

329
330 |# nn3_m is like nn3 but uses momentum

331 |[mm1_m = NN(data, validation_proportion = 0)

332 |mm1_m.add_layer(Linear_complete_layer_momentum(mmi_m,3))

333 |#mm1_m.add_layer(Sigmoid_layer(mm1_m)) # comment this or the next
334 |mm1_m.add_layer (ReLU_layer(mm1_m))

335 |mm1_m.add_layer(Linear_complete_layer_momentum(mmi_m,1))

336 |#mm1_m.learn(epochs = 100)

337
338 |# nn2 has a single a hidden layer of width 2

339 |nn2 = NN(data, validation_proportion = 0)

340 |nn2.add_layer(Linear_complete_layer_RMS_Prop(nn2,2))
341 |nn2.add_layer(ReLU_layer(nn2))

342 |nn2.add_layer(Linear_complete_layer_RMS_Prop(nn2,1))
343
344 |# nn5 is has a single hidden layer of width 5

345 |nn5 = NN(data, validation_proportion = 0)

346 |nn5.add_layer(Linear_complete_layer_RMS_Prop(nn5,5))
347 |nn5.add_layer(ReLU_layer(nn5))

348 |nn5.add_layer(Linear_complete_layer_RMS_Prop(nn5,1))
349
350 |# nn@ has no hidden layers, and so is just logistic regression:
351 |nn@ = NN(data, validation_proportion = @) #learning_rate=0.05)
352 | nn@.add_layer(Linear_complete_layer(nn@,1))

353 |# Or try this for RMS-Prop:

354 | #nn@.add_layer(Linear_complete_layer_RMS_Prop(nn@,1))

Figure 8.1 shows the training and test performance on the SPECT dataset
for the architectures above. Note the nn5 test had infinite log loss on the test set
after about 45,000 steps. The noisiness of the predictions might indicate that
the step size is too big. This was produced by the code below:

learnNN.py — (continued)

356 | from learnLinear import plot_steps
357 | from learnProblem import Evaluate
358
359 |# To show plots first choose a criterion to use

360 |# crit = Evaluate.log_loss

361 |# crit = Evaluate.accuracy

362 |# plot_steps(learner = nn@, data = data, criterion=crit, num_steps=10000,
log_scale=False, legend_label="nno")

363 |# plot_steps(learner = nn2, data = data, criterion=crit, num_steps=10000,
log_scale=False, legend_label="nn2")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

364

365

366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381

8.5. Examples 197

2.5 1

2.0
iy nnO training
2154 nno teslt .
a —— nn2 training
2 —=—- nn2 test
o L
oS —— nn3 training
g ——=- nn3 test
© '
o nn5 training
z 107 —==- nn5 test

0.5

0 20000 40000 60000 80000 100000

step

Figure 8.1: Plotting train and test log loss for various algorithms on SPECT dataset

plot_steps(learner = nn3, data = data, criterion=crit, num_steps=10000,
log_scale=False, legend_label="nn3")

plot_steps(learner = nn5, data = data, criterion=crit, num_steps=10000,
log_scale=False, legend_label="nn5")

for (nn,nname) in [(nn@,"nn@"), (nn2,"nn2"), (nn3,"nn3"), (nn5,"nn5")7]:
plot_steps(learner = nn, data = data, criterion=crit,
num_steps=100000, log_scale=False, legend_label=nname)

Print some training examples
#for eg in random.sample(data.train,10): print(eg,nn3.predictor(eg))

Print some test examples
#for eg in random.sample(data.test,10): print(eg,nn3.predictor(eg))

To see the weights learned in linear layers
nn3.layers[0].weights

nn3.layers[2].weights

Print test:

for e in data.train: print(e,nn@.predictor(e))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

198 8. Neural Networks and Deep Learning

382 |def test(data, hidden_widths = [5], epochs=100,

383 optimizers = [Linear_complete_layer,

384 Linear_complete_layer_momentum,

Linear_complete_layer_RMS_Propl):

385 data.display(@, "Batch\t","\t".join(criterion.__doc__ for criterion in
Evaluate.all_criteria))

386 for optimizer in optimizers:

387 nn = NN(data)

388 for width in hidden_widths:

389 nn.add_layer(optimizer(nn,width))

390 nn.add_layer (ReLU_layer(nn))

391 if data.target.ftype == "boolean”:

392 nn.add_layer(optimizer(nn,1))

393 else:

394 error(f"Not implemented: {data.output_typel}")

395 nn.learn(epochs)

The following tests are on the MNIST digit dataset. The original files are

from http://yann.lecun.com/exdb/mnist/. This code assumes you use the csv

files from Joseph Redmon (https://pjreddie.com/projects/mnist-in-csv/or
https://github.com/pjreddie/mnist-csv-pnglorhttps://www.kaggle.com/datasets/
oddrationale/mnist-in-csv) and put them in the directory ../MNIST/. Note

that this is very inefficient; you would be better to use Keras or PyTorch. There

are 28 * 28 = 784 input units and 512 hidden units, which makes 401,408 pa-
rameters for the lowest linear layer. So don’t be surprised if it takes many hours

in AIPython (even if it only takes a few seconds in Keras).

learnNN.py — (continued)

397 |# Simplified version: (6000 training instances)

398 |# data_mnist = Data_from_file('../MNIST/mnist_train.csv', prob_test=0.9,
target_index=0, boolean_features=False, target_type="categorical”)
399
400 |# Full version:

401 |# data_mnist = Data_from_files('../MNIST/mnist_train.csv',
'../MNIST/mnist_test.csv', target_index=0, boolean_features=False,
target_type="categorical”)

402
403 |# nn_mnist = NN(data_mnist, validation_proportion = 0.02,
learning_rate=0.001) #validation set = 1200

404 |# nn_mnist.add_layer(Linear_complete_layer_RMS_Prop(nn_mnist,512));
nn_mnist.add_layer(ReLU_layer(nn_mnist));
nn_mnist.add_layer(Linear_complete_layer_RMS_Prop(nn_mnist,10))

405 |# start_time = time.perf_counter();nn_mnist.learn(epochs=1,
batch_size=128);end_time = time.perf_counter();print("Time:"”, end_time
- start_time,"seconds"”") #1 epoch

406 |# determine test error:

407 |# data_mnist.evaluate_dataset(data_mnist.test, nn_mnist.predictor,
Evaluate.accuracy)

408 |# Print some random predictions:

409 |# for eg in random.sample(data_mnist.test,10):

https://aipython.org Version 0.9.15 December 23, 2024

http://yann.lecun.com/exdb/mnist/
https://pjreddie.com/projects/mnist-in-csv/
https://github.com/pjreddie/mnist-csv-png
https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
https://www.kaggle.com/datasets/oddrationale/mnist-in-csv
https://aipython.org

8.5. Examples 199

print(data_mnist.target(eg), nn_mnist.predictor(eg),
nn_mnist.predictor(eg)[data_mnist.target(eg)])

Exercise 8.2 In the definition of nn3 above, for each of the following, first hy-
pothesize what will happen, then test your hypothesis, then explain whether you
testing confirms your hypothesis or not. Test it for more than one data set, and use
more than one run for each data set.

(a) Which fits the data better, having a sigmoid layer or a ReLU layer after the
first linear layer?

(b) Which is faster to learn, having a sigmoid layer or a ReLU layer after the first
linear layer? (Hint: Plot error as a function of steps).

(c) What happens if you have both the sigmoid layer and then a ReLU layer
after the first linear layer and before the second linear layer?

(d) What happens if you have a ReLU layer then a sigmoid layer after the first
linear layer and before the second linear layer?

(e) What happens if you have neither the sigmoid layer nor a ReLU layer after
the first linear layer?

Exercise 8.3 Using some of the test set as a validation set, and stopping when the
validation error gets worse, which of the settings is the best? Suggest another al-
gorithm (either changing architecture of hyper-parameters) which you conjecture
would be better. Is it better?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16

Chapter 9

Reasoning with Uncertainty

9.1 Representing Probabilistic Models

A probabilistic model uses the same definition of a variable as a CSP (Section
page[69). A variable consists of a name, a domain and an optional (x,y)
position (for displaying). The domain of a variable is a list or a tuple, as the
ordering matters for some representation of factors.

9.2 Representing Factors

A factor is, mathematically, a function from variables into a number; that is,
given a value for each of its variable, it gives a number. Factors are used for
conditional probabilities, utilities in the next chapter, and are explicitly con-
structed by some algorithms (in particular, variable elimination).

A variable assignment, or just an assignment, is represented as a {variable :
value} dictionary. A factor can be evaluated when all of its variables are as-
signed. This is implemented in the can_evaluate method which can be over-
ridden for representations that don’t require all variable be assigned (such as
decision trees). The method get_value evaluates the factor for an assignment.
The assignment can include extra variables not in the factor. This method needs
to be defined for every subclass.

probFactors.py — Factors for graphical models

from display import Displayable
import math

class Factor(Displayable):
nextid=0 # each factor has a unique identifier; for printing

201

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36

38
39
40

41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57

58

202 9. Reasoning with Uncertainty

def __init__(self, variables, name=None):
self.variables = variables # list of variables
if name:
self.name = name
else:
self.name = f"f{Factor.nextid}"
Factor.nextid += 1

def can_evaluate(self,assignment):
"""True when the factor can be evaluated in the assignment
assignment is a {variable:value} dict

nnn

return all(v in assignment for v in self.variables)

def get_value(self,assignment):
"""Returns the value of the factor given the assignment of values
to variables.
Needs to be defined for each subclass.
assert self.can_evaluate(assignment)
raise NotImplementedError("get_value") # abstract method

The method __str__ returns a brief definition (like “f7(X,Y,Z)"”).The method

to_table returns string representations of a table showing all of the assign-
ments of values to variables, and the corresponding value.

probFactors.py — (continued)

def __str__(self):
"""returns a string representing a summary of the factor
return f"{self.name}({',"'.join(str(var) for var in
self.variables)})”

nnn

def to_table(self, variables=None, given={}):

"""returns a string representation of the factor.

Allows for an arbitrary variable ordering.

variables is a list of the variables in the factor

(can contain other variables)"""

if variables==None:
variables = [v for v in self.variables if v not in given]

else: #enforce ordering and allow for extra variables in ordering
variables = [v for v in variables if v in self.variables and v

not in given]
head = "\t".join(str(v) for v in variables)+"\t"+self.name
return head+"\n"+self.ass_to_str(variables, given, variables)

def ass_to_str(self, vars, asst, allvars):
#print(f”ass_to_str({vars}, {asst}, {allvars})")
if vars:
return "\n"”.join(self.ass_to_str(vars[1:], {**asst,
vars[0]:val}, allvars)
for val in vars[@].domain)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

59
60
61

62
63
64
65

67
68
69
70
71
72
73
74
75
76
77
78

79
80
81
82

84
85
86
87
88
89

9.3. Conditional Probability Distributions 203

else:
val = self.get_value(asst)
val_st = "{:.6f}".format(val) if isinstance(val,float) else
str(val)
return ("\t".join(str(asst[var]) for var in allvars)
+ "\t"+val_st)
_repr__ = __str

9.3 Conditional Probability Distributions
A conditional probability distribution (CPD) is a factor that represents a con-

ditional probability. A CPD representing P(X | Yi...Yj) is a factor, which
given values for X and each Y; returns a number.

probFactors.py — (continued)

class CPD(Factor):
def __init__(self, child, parents):
"""represents P(variable | parents)
self.parents = parents
self.child = child
Factor.__init__(self, parents+[child], name=f"Probability")

def __str__(self):
"""A brief description of a factor using in tracing
if self.parents:
return f"P({self.child}|{"','.join(str(p) for p in
self.parents)})”

nnn

else:
return f"P({self.child})"”

__repr__ = str

A constant CPD has no parents, and has probability 1 when the variable has
the value specified, and 0 when the variable has a different value.

probFactors.py — (continued)

class ConstantCPD(CPD):
def __init__(self, variable, value):
CPD.__init__(self, variable, [])
self.value = value
def get_value(self, assignment):
return 1 if self.value==assignment[self.child] else @

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

91
92
93
94
95

96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

115
116

204 9. Reasoning with Uncertainty

9.3.1 Logistic Regression

Alogistic regression CPD, for Boolean variable X represents P(X=True | Y7 ...Yy),
using k + 1 real-valued weights so

P(X=True | Y1...Yy) = sigmoid(wo + Y_w;Y;)
i

where for Boolean Y;, True is represented as 1 and False as 0.

probFactors.py — (continued)

from learnLinear import sigmoid, logit

class LogisticRegression(CPD):
def __init__(self, child, parents, weights):

"""A logistic regression representation of a conditional
probability.

child is the Boolean (or ©/1) variable whose CPD is being defined

parents is the list of parents

weights is list of parameters, such that weights[i+1] is the weight
for parents[i]

weights[@] is the bias.

assert len(weights) == 1+len(parents)

CPD.__init__(self, child, parents)

self.weights = weights

def get_value(self,assignment):
assert self.can_evaluate(assignment)
prob = sigmoid(self.weights[0]
+ sum(self.weights[i+1]*assignment[self.parents[i]]
for i in range(len(self.parents))))
if assignment[self.child]: #child is true
return prob
else:
return (1-prob)

9.3.2 Noisy-or

A noisy-or, for Boolean variable X with Boolean parents Y7 ... Y} is parametrized
by k 4 1 parameters py, p1, . . ., pr, where each 0 < p; < 1. The semantics is de-
fined as though there are k + 1 hidden variables Zy, Z; . . . Zy, where P(Zy) = po
and P(Z; | Y;) = pifori > 1,and where X is trueifand only if Zg V Z1 V - - - V Z;
(where V is “or”). Thus X is false if all of the Z; are false. Intuitively, Z is the
probability of X when all Y; are false and each Z; is a noisy (probabilistic) mea-
sure that Y; makes X true, and X only needs one to make it true.

probFactors.py — (continued)

class NoisyOR(CPD):
def __init__(self, child, parents, weights):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

117
118

119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

9.3. Conditional Probability Distributions 205

"""A noisy representation of a conditional probability.

variable is the Boolean (or 0/1) child variable whose CPD is being
defined

parents is the list of Boolean (or ©/1) parents

weights is list of parameters, such that weights[i+1] is the weight
for parents[i]

assert len(weights) == 1+len(parents)

CPD.__init__(self, child, parents)
self.weights = weights

def get_value(self,assignment):
assert self.can_evaluate(assignment)
probfalse = (1-self.weights[@])*math.prod(1-self.weights[i+1]
for i in range(len(self.parents))
if assignment[self.parents[i]])
if assignment[self.child]: # child is assigned True in assignment
return 1-probfalse
else:
return probfalse

9.3.3 Tabular Factors and Prob

A tabular factor is a factor that represents each assignment of values to vari-
ables separately. It is represented by a Python array (or Python dict). If the
variables are V1, V5, ..., Vy, the value of f(V] = vy, Vo = vq,..., Vi = v;) is
stored in f[v1][v2] . . . [vk].

If the domain of V;is [0, ..., n; — 1] it can be represented as an array. Oth-
erwise it can use a dictionary. Python is nice in that it doesn’t care, whether an
array or dict is used except when enumerating the values; enumerating a dict
gives the keys (the variables) but enumerating an array gives the values. So we
had to be careful not to enumerate the values.

probFactors.py — (continued)

class TabFactor(Factor):

def __init__(self, variables, values, name=None):
Factor.__init__(self, variables, name=name)
self.values = values

def get_value(self, assignment):
return self.get_val_rec(self.values, self.variables, assignment)

def get_val_rec(self, value, variables, assignment):
if variables == []:
return value
else:
return self.get_val_rec(value[assignment[variables[@]]1],
variables[1:],assignment)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

152
153
154
155
156
157
158
159
160

162
163
164
165
166
167
168
169
170
171

173
174
175

206 9. Reasoning with Uncertainty

Prob is a factor that represents a conditional probability by enumerating all
of the values.

probFactors.py — (continued)

class Prob(CPD,TabFactor):
"""A factor defined by a conditional probability table
def __init__(self, var, pars, cpt, name=None):

"""Creates a factor from a conditional probability table, cpt
The cpt values are assumed to be for the ordering par+[var]

nnn

nnn

TabFactor.__init__(self, pars+[var], cpt, name)
self.child = var
self.parents = pars

9.3.4 Decision Tree Representations of Factors

A decision tree representation of a conditional probability of a child variable is
either:

e IFeq(var, val, true_cond, false_cond) where true_cond and false_cond
are decision trees. true_cond is used if variable var has value val in an
assignment; false_cond is used if var has a different value

¢ a deterministic functions that has probability 1 if a parent has the same
value as the child (using SameAs(parent))

¢ adistribution over the child variable (using Dist(dict)).

Note that not all parents need to be assigned to evaluate the decision tree; it
only needs a branch down the tree that gives the distribution.

probFactors.py — (continued)

class ProbDT(CPD):
def __init__(self, child, parents, dt):
CPD.__init__(self, child, parents)
self.dt = dt

def get_value(self, assignment):
return self.dt.get_value(assignment, self.child)

def can_evaluate(self, assignment):
return self.child in assignment and self.dt.can_evaluate(assignment)

Decision trees are made up of conditions; here equality of a value and a vari-
able:

probFactors.py — (continued)

class IFeq:
def __init__(self, var, val, true_cond, false_cond):
self.var = var

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

198
199
200
201
202
203
204
205
206
207

209
210
211

212
213
214
215
216
217
218

9.3. Conditional Probability Distributions 207

self.val = val
self.true_cond = true_cond
self.false_cond = false_cond

def get_value(self, assignment, child):
""" IFeq(var, val, true_cond, false_cond)
value of true_cond is used if var has value val in assignment,
value of false_cond is used if var has a different value

nnn

if assignment[self.var] == self.val:
return self.true_cond.get_value(assignment, child)
else:

return self.false_cond.get_value(assignment,child)

def can_evaluate(self, assignment):
if self.var not in assignment:
return False

elif assignment[self.var] == self.val:
return self.true_cond.can_evaluate(assignment)
else:

return self.false_cond.can_evaluate(assignment)

The following is a deterministic function that is true if the parent has the
same value as the child. This is used for deterministic conditional probabilities
(as is common for causal models, as described in Chapter .

probFactors.py — (continued)

class SameAs:
def __init__(self, parent):

"""1 when child has same value as parent, otherwise 0"""
self.parent = parent

def get_value(self, assignment, child):
return 1 if assignment[child]==assignment[self.parent] else @

def can_evaluate(self, assignment):
return self.parent in assignment

At the leaves are distributions over the child variable.

probFactors.py — (continued)

class Dist:
def __init__(self, dist):
"""Dist is an array or dictionary indexed by value of current
Child”””

self.dist = dist

def get_value(self, assignment, child):
return self.dist[assignment[child]]

def can_evaluate(self, assignment):
return True

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

208 9. Reasoning with Uncertainty

The following shows a decision representation of the Example 9.18 of|Poole and
Mackworth! [2023]]. When the Action is to go out, the probability is a function
of rain; otherwise it is a function of full.

probFactors.py — (continued)

##HHH# A decision tree representation Example 9.18 of AIFCA 3e
from variable import Variable

boolean = [False, Truel]
action = Variable('Action', ['go_out', 'get_coffee'], position=(0.5,0.8))
rain = Variable('Rain', boolean, position=(0.2,0.8))
full = Variable('Cup Full', boolean, position=(0.8,0.8))
wet = Variable('Wet', boolean, position=(0.5,0.2))
p_wet = ProbDT(wet,[action,rain,fulll,
IFeq(action, 'go_out',
IFeq(rain, True, Dist([0.2,0.8]), Dist([0.9,0.11)),
IFeq(full, True, Dist([0.4,0.6]), Dist([0.7,0.3]1))))

See probRC for wetBN which expands this example to a complete network

9.4 Graphical Models

A graphical model consists of a title, a set of variables, and a set of factors.

probGraphicalModels.py — Graphical Models and Belief Networks

from display import Displayable
from variable import Variable
from probFactors import CPD, Prob
import matplotlib.pyplot as plt

class GraphicalModel (Displayable):
"""The class of graphical models.
A graphical model consists of a title, a set of variables and a set of
factors.

vars is a set of variables
factors is a set of factors

nnn

def __init__(self, title, variables=None, factors=None):
self.title = title
self.variables = variables
self.factors = factors

A belief network (also known as a Bayesian network) is a graphical model
where all of the factors are conditional probabilities, and every variable has
a conditional probability of it given its parents. This checks the first condi-

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43

45
46

47
48
49
50
51

52
53
54
55
56
57
58
59

60
61
62

63
64

9.4. Graphical Models 209

tion (that all factors are conditional probabilities), and builds some useful data
structures.

probGraphicalModels.py — (continued)

class BeliefNetwork(GraphicalModel):
"""The class of belief networks.

nnn

def __init__(self, title, variables, factors):
"""vars is a set of variables
factors is a set of factors. All of the factors are instances of
CPD (e.g., Prob).
GraphicalModel.__init__(self, title, variables, factors)
assert all(isinstance(f,CPD) for f in factors), factors
self.var2cpt = {f.child:f for f in factors}
self.var2parents = {f.child:f.parents for f in factors}
self.children = {n:[] for n in self.variables}
for v in self.var2parents:
for par in self.var2parents[v]:
self.children[par].append(v)
self.topological_sort_saved = None

The following creates a topological sort of the nodes, where the parents of
a node come before the node in the resulting order. This is based on Kahn's
algorithm from 1962.

probGraphicalModels.py — (continued)

def topological_sort(self):
"""creates a topological ordering of variables such that the
parents of
a node are before the node.
if self.topological_sort_saved:
return self.topological_sort_saved
next_vars = {n for n in self.var2parents if not self.var2parents[n]
3
self.display(3, 'topological_sort: next_vars',6next_vars)
top_order=[]
while next_vars:
var = next_vars.pop()
self.display(3, 'select variable', var)
top_order.append(var)
next_vars |= {ch for ch in self.children[var]
if all(p in top_order for p in
self.var2parents[ch])}
self.display(3, 'var_with_no_parents_left', 6 next_vars)
self.display(3,"top_order"”, top_order)
assert
set(top_order)==set(self.var2parents), (top_order,self.var2parents)
self.topologicalsort_saved=top_order
return top_order

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

66
67
68
69
70
71

72
73
74
75
76

77
78
79

210 9. Reasoning with Uncertainty

4-chain

@\@

Figure 9.1: bn_4ch.show()

9.4.1 Showing Belief Networks

The show method uses matplotlib to show the graphical structure of a belief
network.

probGraphicalModels.py — (continued)

def show(self, fontsize=10, facecolor='orange'):
plt.ion() # interactive
ax = plt.figure().gca()
ax.set_axis_off()
plt.title(self.title, fontsize=fontsize)
bbox =
dict(boxstyle="round4,pad=1.0,rounding_size=0.5",facecolor=facecolor)
for var in self.variables: #reversed(self.topological_sort()):
for par in self.var2parents[var]:
ax.annotate(var.name, par.position, xytext=var.position,
arrowprops={'arrowstyle': '<-"'}, bbox=bbox,
ha='center', va='center',
fontsize=fontsize)
for var in self.variables:
X,y = var.position
plt.text(x,y,var.name,bbox=bbox,ha='center', va='center',
fontsize=fontsize)

9.4.2 Example Belief Networks
A Chain of 4 Variables

The first example belief network is a simple chain A — B — C — D,
shown in Figure
Please do not change this, as it is the example used for testing.

probGraphicalModels.py — (continued)

81 ‘#### Simple Example Used for Unit Tests #i###

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

82
83
84
85
86
87
88
89
90
91
92
93

11
12
13
14

9.4. Graphical Models

Report-of-leaving

o
(e

Leaving

Figure 9.2: The report-of-leaving belief network

boolean = [False, Truel]

Variable("A", boolean, position=(0,0.8))
Variable("B", boolean, position=(0.333,0.7))
Variable("C", boolean, position=(0.666,0.6))
Variable(”"D", boolean, position=(1,0.5))

A =

O O ™
1

Prob(A,[],[0.4,0.6])
Prob(B,[Al,[[0.9,0.11,[0.2,0.8]1)
Prob(C,[B1,[[0.6,0.41,[0.3,0.711)
Prob(D,[C]1,[[0.1,0.9]1,[0.75,0.2511)

bn_4ch = BeliefNetwork("4-chain", {A,B,C,D}, {f_a,f_b,f_c,f_d})

Report-of-Leaving Example

211

The second belief network, bn_report, is Example 9.13 of Poole and Mack-
worth|[2023] (http://artint.info). The output of bn_report.show() is shown
in Figure[9.2] of this document.

probExamples.py — Example belief networks

from variable import Variable
from probFactors import CPD, Prob, LogisticRegression, NoisyOR, ConstantCPD
from probGraphicalModels import BeliefNetwork

https://aipython.org Version 0.9.15

December 23, 2024

http://artint.info
https://aipython.org

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33

34

212 9. Reasoning with Uncertainty

Simple Diagnosis

Sore Throat

Figure 9.3: Simple diagnosis example; simple_diagnosis.show()

Belief network report-of-leaving example (Example 9.13 shown in Figure
9.3) of

Poole and Mackworth, Artificial Intelligence, 2023 http://artint.info

boolean = [False, True]

Alarm = Variable("Alarm”, boolean, position=(0.366,0.5))
Fire = Variable("Fire"”, boolean, position=(0.633,0.75))
Leaving = Variable("Leaving", boolean, position=(0.366,0.25))
Report = Variable("Report”, boolean, position=(0.366,0.0))
Smoke = Variable("Smoke", boolean, position=(0.9,0.5))
Tamper = Variable("Tamper"”, boolean, position=(0.1,0.75))

f_ta = Prob(Tamper,[]1,[0.98,0.02])

f_fi = Prob(Fire,[],[0.99,0.011)

f_sm = Prob(Smoke, [Fire],[[0.99,0.01]1,[0.1,0.9]11)

f_al = Prob(Alarm,[Fire,Tamper],[[[0.9999, 0.0001], [0.15, ©.85]], [[0.01,
0.991, [0.5, 0.5111)

f_lv = Prob(Leaving,[Alarm],[[0.999, 0.001], [0.12, ©.88]1])

f_re = Prob(Report,[Leaving],[[0.99, 0.01], [0.25, ©.75]1)

bn_report = BeliefNetwork("Report-of-leaving”,
{Tamper,Fire, Smoke,Alarm,Leaving,Report},
{f_ta,f_fi,f_sm,f_al,f_lv,f_re})

Simple Diagnostic Example

This is the “simple diagnostic example” of Exercise 9.1 of Poole and Mackworth
[2023], reproduced here as Figure

probExamples.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56

57

59

60
61
62
63
64
65
66
67
68
69

70
71
72
73

9.4. Graphical Models 213

Belief network simple-diagnostic example (Exercise 9.3 shown in Figure
9.39) of
Poole and Mackworth, Artificial Intelligence, 2023 http://artint.info

Influenza = Variable("Influenza”, boolean, position=(0.4,0.8))

Smokes = Variable("Smokes"”, boolean, position=(0.8,0.8))
SoreThroat = Variable("Sore Throat”, boolean, position=(0.2,0.5))
HasFever = Variable("Fever"”, boolean, position=(0.4,0.5))

Bronchitis = Variable("Bronchitis"”, boolean, position=(0.6,0.5))
Coughing = Variable("Coughing"”, boolean, position=(0.4,0.2))
Wheezing = Variable("Wheezing”, boolean, position=(0.8,0.2))

p_infl = Prob(Influenza,[]1,[0.95,0.05])

p_smokes = Prob(Smokes,[],[0.8,0.21)

p_sth = Prob(SoreThroat, [Influenzal,[[0.999,0.001],[0.7,0.31])

p_fever = Prob(HasFever,[Influenzal,[[0.99,0.05],[0.9,0.1]1])

p_bronc = Prob(Bronchitis, [Influenza,Smokes],[[[0.9999, 0.0001], [0.3,
0.711, [[0.1, .91, [0.01, 0.99111)

p_cough = Prob(Coughing,[Bronchitis],[[0.93,0.07],[0.2,0.8]1])

p_wheeze = Prob(Wheezing,[Bronchitis],[[0.999,0.001]1,[0.4,0.611)

simple_diagnosis = BeliefNetwork("Simple Diagnosis”,
{Influenza, Smokes, SoreThroat, HasFever, Bronchitis,
Coughing, Wheezing},
{p_infl, p_smokes, p_sth, p_fever, p_bronc, p_cough,
p_wheeze})

Sprinkler Example

The third belief network is the sprinkler example from Pearl [2009]. The output
of bn_sprinkler.show() is shown in Figure 0.4 of this document.

probExamples.py — (continued)

non

Season = Variable("Season”, ["dry_season”,"wet_season"],
position=(0.5,0.9))

Sprinkler = Variable("Sprinkler”, ["on","off"], position=(0.9,0.6))

Rained = Variable("Rained”, boolean, position=(0.1,0.6))

Grass_wet = Variable("Grass wet"”, boolean, position=(0.5,0.3))

Grass_shiny = Variable("Grass shiny”, boolean, position=(0.1,0))

Shoes_wet = Variable("”Shoes wet"”, boolean, position=(0.9,0))

f_season = Prob(Season,[],{'dry_season':0.5, 'wet_season':0.5})
f_sprinkler = Prob(Sprinkler,[Season],{'dry_season':{'on':0.4,'off':0.63},
'wet_season':{'on':0.01, 'off':0.99}})
f_rained = Prob(Rained, [Season],{'dry_season':[0.9,0.1], 'wet_season':
[0.2,0.813})

f_wet = Prob(Grass_wet,[Sprinkler,Rained], {'on': [[0.1,0.9],[0.01,0.991],
'off':[[0.99,0.01],[0.3,0.711})

f_shiny = Prob(Grass_shiny, [Grass_wet], [[0.95,0.05], [0.3,0.7]1)

f_shoes = Prob(Shoes_wet, [Grass_wet], [[0.98,0.02], [0.35,0.65]1])

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

74
75
76

77

79
80
81
82
83
84

214 9. Reasoning with Uncertainty

Pearl's Sprinkler Example

Sprinkler

Grass shiny Shoes wet

Figure 9.4: The sprinkler belief network

bn_sprinkler = BeliefNetwork("Pearl's Sprinkler Example”,
{Season, Sprinkler, Rained, Grass_wet, Grass_shiny,
Shoes_wet},
{f_season, f_sprinkler, f_rained, f_wet, f_shiny,
f_shoes})

Bipartite Diagnostic Model with Noisy-or

The belief network bn_no1 is a bipartite diagnostic model, with independent
diseases, and the symptoms depend on the diseases, where the CPDs are de-
fined using noisy-or. Bipartite means it is in two parts; the diseases are only
connected to the symptoms and the symptoms are only connected to the dis-
eases. The output of bn_no1.show() is shown in Figure of this document.

probExamples.py — (continued)

#i### Bipartite Diagnostic Network ##H#

Cough = Variable("Cough", boolean, (0.1,0.1))
Fever = Variable("Fever”, boolean, (0.5,0.1))
Sneeze = Variable("Sneeze", boolean, (0.9,0.1))
Cold = Variable("Cold"”,boolean, (0.1,0.9))

Flu = Variable("Flu”,boolean, (0.5,0.9))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105

9.4. Graphical Models

Bipartite Diagnostic Network (noisy-or)

Cold Flu @

Figure 9.5: A bipartite diagnostic network

Covid = Variable("Covid”,boolean, (0.9,0.9))

p_cold_no = Prob(Cold,[],[0.9,0.11)
p_flu_no = Prob(Flu,[]1,[0.95,0.05])
p_covid_no = Prob(Covid,[],[0.99,0.01])

p_cough_no = NoisyOR(Cough, [Cold,Flu,Covid], [0.1, 0.3, 0.2, 0.7])
p_fever_no = NoisyOR(Fever, [Flu,Covid], [0.01, 0.6, 0.71)
p_sneeze_no = NoisyOR(Sneeze, [Cold,Flu 1, [0.05, 0.5, 0.2 D

bn_nol = BeliefNetwork("Bipartite Diagnostic Network (noisy-or)",
{Cough, Fever, Sneeze, Cold, Flu, Covid},
{p_cold_no, p_flu_no, p_covid_no, p_cough_no,
p_fever_no, p_sneeze_no})

to see the conditional probability of Noisy-or do:
print(p_cough_no.to_table())

E=3

example from box "Noisy-or compared to logistic regression”

X = Variable("X",boolean)

wo = 0.01

print(NoisyOR(X,[A,B,C,D],[w0, 1-(1-0.05)/(1-w@), 1-(1-0.1)/(1-w0),
1-(1-0.2)/(1-w@), 1-(1-0.2)/(1-w@), 1).to_table(given={X:True}))

H ¥ H H

215

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

107
108
109
110
111
112

113

114

115
116

117
118

119
120
121
122
123
124
125
126
127

128
129

216 9. Reasoning with Uncertainty

Bipartite Diagnostic Model with Logistic Regression

The belief network bn_1r1 is a bipartite diagnostic model, with independent
diseases, and the symptoms depend on the diseases, where the CPDs are de-
fined using logistic regression. It has the same graphical structure as the pre-
vious example (see Figure [9.5). This has the (approximately) the same con-
ditional probabilities as the previous example when zero or one diseases are
present. Note that sigmoid(—2.2) ~ 0.1

probExamples.py — (continued)

p_cold_1lr = Prob(Cold,[],[0.9,0.1])
p_flu_lr = Prob(Flu,[],[0.95,0.05])
p_covid_lr = Prob(Covid,[],[0.99,0.01])

p_cough_lr = LogisticRegression(Cough, [Cold,Flu,Covidl], [-2.2, 1.67,

1.26, 3.191)
p_fever_lr = LogisticRegression(Fever, [Flu,Covid], [-4.6, 5.02,
5.461)

p_sneeze_lr = LogisticRegression(Sneeze, [Cold,Flu 1, [-2.94, 3.04, 1.79
D

bn_1r1 = BeliefNetwork("Bipartite Diagnostic Network - logistic
regression”,
{Cough, Fever, Sneeze, Cold, Flu, Covid},
{p_cold_1lr, p_flu_lr, p_covid_lr, p_cough_1lr,
p_fever_lr, p_sneeze_1r})

to see the conditional probability of Noisy-or do:
#print(p_cough_lr.to_table())

example from box "Noisy-or compared to logistic regression”

from learnLinear import sigmoid, logit

wo=logit(0.01)

X = Variable("X",boolean)

print(LogisticRegression(X,[A,B,C,D],[w@, logit(0.05)-w@, logit(@.1)-wo,
logit(0.2)-w@, logit(@.2)-we@]).to_table(given={X:True}))

try to predict what would happen (and then test) if we had

wo=logit(0.01)

=+

0.5 Inference Methods

Each of the inference methods implements the query method that computes
the posterior probability of a variable given a dictionary of {variable : value}
observations. The methods are Displayable because they implement the display
method which is text-based unless overridden.

probGraphicalModels.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111
112

113

114

116

117
118
119
120
121
122
123
124
125
126

127
128

9.5. Inference Methods 217

from display import Displayable

class InferenceMethod(Displayable):
"""The abstract class of graphical model inference methods
method_name = "unnamed"” # each method should have a method name

nnn

def __init__(self,gm=None):
self.gm = gm

def query(self, qvar, obs={}):
"""returns a {value:prob} dictionary for the query variable
raise NotImplementedError("InferenceMethod query”) # abstract method

nnn

We use bn_4ch as the test case, in particular P(B | D = true). This needs an
error threshold, particularly for the approximate methods, where the default
threshold is much too accurate.

probGraphicalModels.py — (continued)

def testIM(self, threshold=0.0000000001):
solver = self(bn_4ch)
res = solver.query(B,{D:True})
correct_answer = 0.429632380245
assert correct_answer-threshold < res[True] <
correct_answer+threshold, \
f"value {res[Truel} not in desired range for
{self.method_name}"
print(f"Unit test passed for {self.method_name}.")

9.5.1 Showing Posterior Distributions

The show_post method draws the posterior distribution of all variables. Figure
©.6)shows the result of bn_reportRC. show_post ({Report:True}) when run after
loading probRC. py (see below).

probGraphicalModels.py — (continued)

def show_post(self, obs={}, num_format="{:.3f}", fontsize=10,
facecolor="'orange'):

"""draws the graphical model conditioned on observations obs
num_format is number format (allows for more or less precision)
fontsize gives size of the text
facecolor gives the color of the nodes

nnn

plt.ion() # interactive

ax = plt.figure().gca()

ax.set_axis_off ()

plt.title(self.gm.title+"” observed: "+str(obs), fontsize=fontsize)

bbox = dict(boxstyle="round4,pad=1.0,rounding_size=0.5",
facecolor=facecolor)

vartext = {} # variable:text dictionary

for var in self.gm.variables: #reversed(self.gm.topological_sort()):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

129
130
131
132
133
134

135
136
137
138
139
140

141
142
143

218 9. Reasoning with Uncertainty

Report-of-leaving observed: {Report: True}

Tamper Fire
False: 0.601 False: 0.769
True: 0.399 True: 0.231

Smoke
False: 0.785
True: 0.215

Alarm
False: 0.372
True: 0.628

Leaving
False: 0.347
True: 0.653

Report=True

Figure 9.6: The report-of-leaving belief network with posterior distributions

if var in obs:

text = var.name + "=" + str(obs[var])
else:

distn = self.query(var, obs=obs)

text = var.name + "\n” + "\n".join(str(d)+":
"+num_format. format(v) for (d,v) in distn.items())
vartext[var] = text
Draw arcs
for par in self.gm.var2parents[var]:
ax.annotate(text, par.position, xytext=var.position,
arrowprops={'arrowstyle': '<-"'}, bbox=bbox,
ha='center', va='center',
fontsize=fontsize)
for var in self.gm.variables:
X,y = var.position
plt.text(x,y,vartext[var], bbox=bbox, ha='center', va='center',
fontsize=fontsize)

0.6 Naive Search

An instance of a ProbSearch object takes in a graphical model. The query method
uses naive search to compute the probability of a query variable given obser-

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42

44
45
46
47
48
49

50

9.6. Naive Search 219

vations on other variables. See Figure 9.9 of Poole and Mackworth|[2023]].

probRC.py — Search-based Inference for Graphical Models

import math
from probGraphicalModels import GraphicalModel, InferenceMethod
from probFactors import Factor

class ProbSearch(InferenceMethod):
"""The class that queries graphical models using search

gm is graphical model to query

nnn

method_name = "naive search”

def __init__(self,gm=None):
InferenceMethod.__init__(self, gm)
self.max_display_level = 3

def query(self, qvar, obs={}, split_order=None):
"""computes P(qvar | obs) where
gvar is the query variable
obs is a variable:value dictionary
split_order is a list of the non-observed non-query variables in gm
if qvar in obs:
return {val:(1 if val == obs[qvar] else 0)
for val in gvar.domain}

else:
if split_order == None:
split_order = [v for v in self.gm.variables
if (v not in obs) and v != qgvar]

unnorm = [self.prob_search({qvar:val}|obs, self.gm.factors,
split_order)
for val in gvar.domain]
p_obs = sum(unnorm)
return {val:pr/p_obs for val,pr in zip(qvar.domain, unnorm)}

The following is the naive search-based algorithm. It is exponential in the
number of variables, so is not very useful. However, it is simple, and helpful
to understand before looking at the more complicated algorithm used in the
subclass.

probRC.py — (continued)

def prob_search(self, context, factors, split_order):
"""simple search algorithm
context: a variable:value dictionary
factors: a set of factors
split_order: list of variables not assigned in context
returns sum over variable assignments to variables in split order
of product of factors """
self.display(2,"calling prob_search,"”, (context,factors,split_order))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

51
52
53
54
55
56
57
58

59
60
61
62
63
64

65

66

68
69
70
71
72
73
74
75
76

77
78
79
80
81
82

220 9. Reasoning with Uncertainty

if not factors:
return 1
elif to_eval := {fac for fac in factors
if fac.can_evaluate(context)}:
evaluate factors when all variables are assigned
self.display(3, "prob_search evaluating factors”,to_eval)
val = math.prod(fac.get_value(context) for fac in to_eval)
return val * self.prob_search(context, factors-to_eval,
split_order)
else:
total = @
var = split_order[@]
self.display(3, "prob_search branching on", var)
for val in var.domain:
total += self.prob_search({var:val}|context, factors,
split_order[1:1)
self.display(3, "prob_search branching on", var,"returning”,
total)
return total

9.7 Recursive Conditioning

The recursive conditioning (RC) algorithm adds forgetting and caching and
recognizing disconnected components to the naive search. We do this by adding
a cache and redefining the recursive search algorithm. It inherits the query
method. See Figure 9.12 of Poole and Mackworth! [2023].

The cache is initialized with the empty context and empty factors has prob-
ability 1. This means that checking the cache can act as the base case when the
context is empty.

probRC.py — (continued)

class ProbRC(ProbSearch):
method_name = "recursive conditioning”

def __init__(self,gm=None):
self.cache = {(frozenset(), frozenset()):1}
ProbSearch.__init__(self,gm)

def prob_search(self, context, factors, split_order):

""" returns sum_{split_order} prod_{factors} given assignment in
context

context is a variable:value dictionary

factors is a set of factors

split_order: list of variables in factors that are not in context

self.display(3,"calling rc,"”, (context,factors))

ce = (frozenset(context.items()), frozenset(factors)) # key for the
cache entry

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

107
108

109

110
111

112
113
114
115
116

117
118
119

9.7. Recursive Conditioning 221

if ce in self.cache:
self.display(3,"rc cache lookup"”, (context,factors))
return self.cache[ce]
elif vars_not_in_factors := {var for var in context
if not any(var in fac.variables
for fac in factors)}:
forget variables not in any factor
self.display(3,"rc forgetting variables”, vars_not_in_factors)
return self.prob_search({key:val for (key,val) in
context.items()
if key not in vars_not_in_factors},
factors, split_order)
elif to_eval := {fac for fac in factors
if fac.can_evaluate(context)}:
evaluate factors when all variables are assigned
self.display(3,"rc evaluating factors”,to_eval)
val = math.prod(fac.get_value(context) for fac in to_eval)

if val == 0:
return 0
else:

return val x self.prob_search(context,
{fac for fac in factors
if fac not in to_eval},
split_order)
elif len(comp := connected_components(context, factors,
split_order)) > 1:
there are disconnected components
self.display(3,"splitting into connected components”,comp,”in
context"”,context)
return(math.prod(self.prob_search(context,f,eo) for (f,eo) in
comp))
else:
assert split_order, "split_order should not be empty to get
here"
total = @
var = split_order[@]
self.display(3, "rc branching on", var)
for val in var.domain:
total += self.prob_search({var:val}|context, factors,
split_order[1:1)
self.cache[ce] = total
self.display(2, "rc branching on”, var,"returning”, total)
return total

connected_components returns a list of connected components, where a con-
nected component is a set of factors and a set of variables, where the graph that
connects variables and factors that involve them is connected. The connected
components are built one at a time; with a current connected component. At
all times factors is partitioned into 3 disjoint sets:

* component_factors containing factors in the current connected compo-

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

121
122

123

124
125
126

127

128
129
130
131
132

133
134
135
136
137
138
139
140
141
142
143
144
145

147
148
149
150
151
152

222 9. Reasoning with Uncertainty

nent where all factors that share a variable are already in the component

¢ factors_to_check containing factors in the current connected component
where potentially some factors that share a variable are not in the com-
ponent; these need to be checked

¢ other_factors the other factors that are not (yet) in the connected com-
ponent

probRC.py — (continued)

def connected_components(context, factors, split_order):

"""returns a list of (f,e) where f is a subset of factors and e is a
subset of split_order

such that each element shares the same variables that are disjoint from
other elements.

other_factors = set(factors) #copies factors

factors_to_check = {other_factors.pop()} # factors in connected
component still to be checked

component_factors = set() # factors in first connected component
already checked

component_variables = set() # variables in first connected component

while factors_to_check:
next_fac = factors_to_check.pop()
component_factors.add(next_fac)
new_vars = set(next_fac.variables) - component_variables -

context.keys()

component_variables |= new_vars
for var in new_vars:
factors_to_check |= {f for f in other_factors
if var in f.variables}
other_factors -= factors_to_check # set difference

if other_factors:
return ([(component_factors,[e for e in split_order
if e in component_variables])]
+ connected_components(context, other_factors,
[e for e in split_order
if e not in component_variables]))
else:
return [(component_factors, split_order)]

Testing:

probRC.py — (continued)
from probGraphicalModels import bn_4ch, A,B,C,D,f_a,f_b,f_c,f_d

bn_4chv = ProbRC(bn_4ch)

bn_4chv.query(A,{})

bn_4chv.query(D,{})

InferenceMethod.max_display_level = 3 # show more detail in displaying
InferenceMethod.max_display_level 1 # show less detail in displaying

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

153
154
155
156
157

158
159
160
161

162
163
164
165
166
167
168
169
170
171
172

173

174
175

176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196

9.7. Recursive Conditioning

bn_4chv.query(A,{D:True}, [C,B])
bn_4chv.query(B,{A:True,D:False})

223

from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke, Tamper
bn_reportRC = ProbRC(bn_report) # answers queries using recursive

##
##
##
##

##
##

#it

conditi

oning

bn_reportRC.query(Tamper,{})
InferenceMethod.max_display_level = @ # show no detail in displaying
bn_reportRC.query(Leaving,{})
bn_reportRC.query(Tamper,{3},

split_o

rder=[Smoke,Fire,Alarm,Leaving,Report])

bn_reportRC. query(Tamper,{Report:True})
bn_reportRC.query(Tamper,{Report:True,Smoke:False})

To display resulting posteriors try:

bn_reportRC.show_post({})

bn_reportRC.show_post({Smoke:False})

bn_reportRC. show_post({Report:True})

bn_reportRC. show_post({Report:True, Smoke:False})

Note what happens to the cache when these are called in turn:
bn_reportRC.query(Tamper,{Report:True},

split_o

rder=[Smoke,Fire,Alarm,Leaving])

bn_reportRC.query(Smoke,{Report:True},

split_o

rder=[Tamper,Fire,Alarm,Leaving])

from probExamples import bn_sprinkler, Season, Sprinkler, Rained,

Grass_w

et, Grass_shiny, Shoes_wet

bn_sprinklerv = ProbRC(bn_sprinkler)

bn_sprinklerv.query(Shoes_wet,{})

bn_sprinklerv.query(Shoes_wet,{Rained:True})

bn_sprinklerv.query(Shoes_wet,{Grass_shiny:True})
bn_sprinklerv.query(Shoes_wet,{Grass_shiny:False,Rained:True})

from probExamples import bn_nol, bn_lr1, Cough, Fever, Sneeze, Cold, Flu,

Covid

bn_nolv = P
bn_lrlv = P

##
##
##
##
##
##
#i#
##

if

https://aipython.org

b
b
b
b
b
b
b
b

n_nolv.
n_lriv.
n_lriv.
n_lriv.
n_lriv.
n_lriv.
n_lriv.
n_lriv.

_hame__

robRC(bn_no1)

robRC(bn_1r1)

query(Flu, {Fever:1, Sneeze:1})

query(Flu, {Fever:1, Sneeze:1})
query(Cough,{})
query(Cold,{Cough:1,Sneeze:0,Fever:13})
query(Flu,{Cough:0,Sneeze:1,Fever:13})
query(Covid, {Cough:1,Sneeze:0,Fever:1})
query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:0})
query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:1})

n

== "__main_

n,

InferenceMethod. testIM(ProbSearch)
InferenceMethod. testIM(ProbRC)

Version 0.9.15

December 23, 2024

https://aipython.org

198
199
200
201
202
203
204
205
206
207
208
209

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

224 9. Reasoning with Uncertainty

The following example uses the decision tree representation of Section [9.3.4]

(page 208).

probRC.py — (continued)

from probFactors import Prob, action, rain, full, wet, p_wet
from probGraphicalModels import BeliefNetwork

p_action = Prob(action,[],{'go_out':0.3, 'get_coffee':0.73})
p_rain = Prob(rain,[],[0.4,0.6])

p_full = Prob(full,[],[0.1,0.9])

wetBN = BeliefNetwork("Wet (decision tree CPD)", {action, rain, full, wet},
{p_action, p_rain, p_full, p_wet})

wetRC = ProbRC(wetBN)

wetRC.query(wet, {action:'go_out', rain:True})
wetRC.show_post({action:'go_out', rain:True})
wetRC.show_post({action: 'go_out', wet:True})

Exercise 9.1 Does recursive conditioning split on variable full for the query
commented out above? Does it need to? Fix the code so that decision tree repre-
sentations of conditional probabilities can be evaluated as soon as possible.

Exercise 9.2 This code adds to the cache only after splitting. Implement a variant
that caches after forgetting. (What can the cache start with?) Which version works
better? Compare some measure of the search tree and the space used. Try other
alternatives of what to cache; which method works best?

0.8 Variable Elimination

An instance of a VE object takes in a graphical model. The query method uses
variable elimination to compute the probability of a variable given observa-
tions on some other variables.

probVE.py — Variable Elimination for Graphical Models

from probFactors import Factor, FactorObserved, FactorSum, factor_times
from probGraphicalModels import GraphicalModel, InferenceMethod

class VE(InferenceMethod):
"""The class that queries Graphical Models using variable elimination.

gm is graphical model to query

nnn

method_name = "variable elimination”

def __init__(self,gm=None):
InferenceMethod.__init__(self, gm)

def query(self,var,obs={},elim_order=None):
"""computes P(var|obs) where

var is a variable

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

237
238
239
240
241
242
243
244

246
247
248
249
250
251
252
253
254

9.8. Variable Elimination 225

nnn

obs is a {variable:value} dictionary
if var in obs:

return {var:1 if val == obs[var] else @ for val in var.domain}
else:
if elim_order == None:

elim_order = self.gm.variables

projFactors = [self.project_observations(fact,obs)
for fact in self.gm.factors]

for v in elim_order:

if v != var and v not in obs:

projFactors = self.eliminate_var(projFactors,v)

unnorm = factor_times(var,projFactors)
p_obs=sum(unnorm)
self.display(1,"Unnormalized probs:",unnorm,"Prob obs:", p_obs)
return {val:pr/p_obs for val,pr in zip(var.domain, unnorm)}

A FactorObserved is a factor that is the result of some observations on an-
other factor. We don't store the values in a list; we just look them up as needed.
The observations can include variables that are not in the list, but should have
some intersection with the variables in the factor.

probFactors.py — (continued)

class FactorObserved(Factor):
def __init__(self,factor,obs):
Factor.__init__(self, [v for v in factor.variables if v not in obs])
self.observed = obs
self.orig_factor = factor

def get_value(self,assignment):
return self.orig_factor.get_value(assignment|self.observed)

A FactorSum is a factor that is the result of summing out a variable from the
product of other factors. Le., it constructs a representation of:

Z H f (var).

var fefactors

We store the values in a list in a lazy manner; if they are already computed, we
used the stored values. If they are not already computed we can compute and
store them.

probFactors.py — (continued)

class FactorSum(Factor):

def __init__(self,var,factors):
self.var_summed_out = var
self.factors = factors
vars = list({v for fac in factors

for v in fac.variables if v is not var})

#for fac in factors:
for v in fac.variables:
if v is not var and v not in vars:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

255
256
257
258
259
260

261
262
263
264
265
266
267
268
269

270
271

273
274
275
276
277
278
279
280

43
44
45
46
47
48
49
50
51
52

226 9. Reasoning with Uncertainty

vars.append(v)
Factor.__init__(self,vars)
self.values = {}

def get_value(self,assignment):
"""lazy implementation: if not saved, compute it. Return saved
value"""
asst = frozenset(assignment.items())
if asst in self.values:
return self.values[asst]
else:
total = @
new_asst = assignment.copy()
for val in self.var_summed_out.domain:
new_asst[self.var_summed_out] = val
total += math.prod(fac.get_value(new_asst) for fac in
self.factors)
self.values[asst] = total
return total

The method factor_times multiplies a set of factors that are all factors on the
same variable (or on no variables). This is the last step in variable elimination
before normalizing. It returns an array giving the product for each value of
variable.

probFactors.py — (continued)

def factor_times(variable, factors):
"""when factors are factors just on variable (or on no variables)
prods = []
facs = [f for f in factors if variable in f.variables]
for val in variable.domain:
ast = {variable:val}
prods.append(math.prod(f.get_value(ast) for f in facs))
return prods

nnn

To project observations onto a factor, for each variable that is observed in
the factor, we construct a new factor that is the factor projected onto that vari-
able. Factor_observed creates a new factor that is the result is assigning a value
to a single variable.

probVE.py — (continued)

def project_observations(self,factor,obs):
"""Returns the resulting factor after observing obs

obs is a dictionary of {variable:value} pairs.

if any((var in obs) for var in factor.variables):
a variable in factor is observed
return FactorObserved(factor,obs)

else:
return factor

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101

9.8. Variable Elimination 227

def eliminate_var(self,factors,var):
"""Eliminate a variable var from a list of factors.
Returns a new set of factors that has var summed out.
self.display(2,”"eliminating ",str(var))
contains_var = []
not_contains_var = []
for fac in factors:
if var in fac.variables:
contains_var.append(fac)

else:
not_contains_var.append(fac)
if contains_var == []:
return factors
else:

newFactor = FactorSum(var,contains_var)
self.display(2,"Multiplying:",[str(f) for f in contains_varl])
self.display(2,"Creating factor:"”, newFactor)

self.display(3, newFactor.to_table()) # factor in detail
not_contains_var.append(newFactor)

return not_contains_var

from probGraphicalModels import bn_4ch, A,B,C,D

bn_4chv = VE(bn_4ch)

bn_4chv.query(A,{})

bn_4chv.query(D,{3})

InferenceMethod.max_display_level = 3 # show more detail in displaying
InferenceMethod.max_display_level = 1 # show less detail in displaying
bn_4chv.query(A,{D:True})

bn_4chv.query(B,{A:True,D:False})

from probExamples import bn_report,Alarm,Fire,Leaving,Report,Smoke, Tamper
bn_reportv = VE(bn_report) # answers queries using variable elimination

bn_reportv.query(Tamper,{3})

InferenceMethod.max_display_level = @ # show no detail in displaying

bn_reportv.query(Leaving,{})

bn_reportv.query(Tamper,{},elim_order=[Smoke,Report,Leaving,Alarm,Fire])
bn_reportv.query(Tamper,{Report:True})

bn_reportv.query(Tamper,{Report:True,Smoke:False})

from probExamples import bn_sprinkler, Season, Sprinkler, Rained,
Grass_wet, Grass_shiny, Shoes_wet

bn_sprinklerv = VE(bn_sprinkler)

bn_sprinklerv.query(Shoes_wet,{})

bn_sprinklerv.query(Shoes_wet,{Rained:True})

bn_sprinklerv.query(Shoes_wet,{Grass_shiny:True})

bn_sprinklerv.query(Shoes_wet,{Grass_shiny:False,Rained:True})

from probExamples import bn_lr1, Cough, Fever, Sneeze, Cold, Flu, Covid

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

102
103
104
105
106
107
108
109
110
111

11
12
13
14
15

16
17
18
19
20
21

23
24

228 9. Reasoning with Uncertainty

vediag = VE(bn_1r1)

vediag.query(Cough,{})

vediag.query(Cold,{Cough:1,Sneeze:0,Fever:13})

vediag.query(Flu,{Cough:0,Sneeze:1,Fever:1})

vediag.query(Covid,{Cough:1,Sneeze:0,Fever:1})

vediag.query(Covid,{Cough:1,Sneeze:0,Fever:1,Flu:0})
vediag.query(Covid,{Cough:1,Sneeze:@,Fever:1,Flu:1})

if __name__ == "__main__":
InferenceMethod. testIM(VE)

0.9 Stochastic Simulation

9.9.1 Sampling from a discrete distribution

The method sample_one generates a single sample from a (possibly unnormal-
ized) distribution. dist is a {value : weight} dictionary, where weight > 0. This
returns a value with probability in proportion to its weight.

probStochSim.py — Probabilistic inference using stochastic simulation

import random
from probGraphicalModels import InferenceMethod

def sample_one(dist):
"""returns the index of a single sample from normalized distribution
dist.”""
rand = random.random()*sum(dist.values())
cum = 0 # cumulative weights
for v in dist:
cum += dist[v]
if cum > rand:
return v

If we want to generate multiple samples, repeatedly calling sample_one may not
be efficient. If we want to generate multiple samples, and the distribution is
over m values, it searches through the m values of the distribution for each
sample.

The method sample_multiple generates multiple samples from a distribution
defined by dist, where dist is a {value : weight } dictionary, where weight > 0 and
the weights are not all zero. This returns a list of values, of length num_samples,
where each sample is selected with a probability proportional to its weight.

The method generates all of the random numbers, sorts them, and then
goes through the distribution once, saving the selected samples.

probStochSim.py — (continued)

def sample_multiple(dist, num_samples):
"""returns a list of num_samples values selected using distribution
dist.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

25
26
27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51

9.9. Stochastic Simulation 229

dist is a {value:weight} dictionary that does not need to be normalized
total = sum(dist.values())
rands = sorted(random.random()*total for i in range(num_samples))
result = []
dist_items = list(dist.items())
cum = dist_items[@][1] # cumulative sum
index = 0
for r in rands:
while r>cum:
index += 1
cum += dist_items[index][1]
result.append(dist_items[index][0])
return result

Exercise 9.3
What is the time and space complexity of the following 4 methods to generate
n samples, where m is the length of dist:

(a) n calls to sample_one

(b) sample_multiple

(c) Create the cumulative distribution (choose how this is represented) and, for
each random number, do a binary search to determine the sample associated
with the random number.

(d) Choose a random number in the range [i/n, (i +1)/n) for each i € range(n),
where 1 is the number of samples. Use these as the random numbers to
select the particles. (Does this give random samples?)

For each method suggest when it might be the best method.

The test_sampling method can be used to generate the statistics from a num-
ber of samples. It is useful to see the variability as a function of the number of
samples. Try it for a few samples and also for many samples.

probStochSim.py — (continued)

def test_sampling(dist, num_samples):
"""Given a distribution, dist, draw num_samples samples
and return the resulting counts
result = {v:0 for v in dist}
for v in sample_multiple(dist, num_samples):
resultfv] += 1
return result

try the following queries a number of times each:

test_sampling({1:1,2:2,3:3,4:4}, 100)
test_sampling({1:1,2:2,3:3,4:4}, 100000)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

53
54

55
56
57
58
59
60

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

230 9. Reasoning with Uncertainty

9.9.2 Sampling Methods for Belief Network Inference

A SamplingInferenceMethod is an InferenceMethod, but the query method also
takes arguments for the number of samples and the sample-order (which is an
ordering of factors). The first methods assume a belief network (and not an
undirected graphical model).

probStochSim.py — (continued)

class SamplingInferenceMethod(InferenceMethod):
"""The abstract class of sampling-based belief network inference
methods"""

def __init__(self,gm=None):
InferenceMethod.__init__(self, gm)

def query(self,qvar,obs={},number_samples=1000,sample_order=None):
raise NotImplementedError("”"SamplingInferenceMethod query") #
abstract

9.9.3 Rejection Sampling

probStochSim.py — (continued)

class RejectionSampling(SamplingInferenceMethod):
"""The class that queries Graphical Models using Rejection Sampling.

gm is a belief network to query

nnn

method_name = "rejection sampling”

def __init__(self, gm=None):
SamplingInferenceMethod.__init__(self, gm)

def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
"""computes P(qvar | obs) where
gvar is a variable.
obs is a {variable:value} dictionary.
sample_order is a list of variables where the parents
come before the variable.
if sample_order is None:
sample_order = self.gm.topological_sort()
self.display(2,*sample_order,sep="\t")
counts = {val:@ for val in qvar.domain}
for i in range(number_samples):
rejected = False
sample = {}
for nvar in sample_order:
fac = self.gm.var2cptlnvar] #factor with nvar as child

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

88

89
90
91
92
93
94
95
96
97
98
99
100

101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

9.9. Stochastic Simulation 231

val = sample_one({v:fac.get_value({**sample, nvar:v}) for v
in nvar.domain})
self.display(2,val,end="\t")
if nvar in obs and obs[nvar] != val:
rejected = True
self.display(2, "Rejected")
break
sample[nvar] = val
if not rejected:
counts[sample[qgvar]] += 1
self.display(2,"Accepted”)
tot = sum(counts.values())
As well as the distribution we also include raw counts
dist = {c:v/tot if tot>0 else 1/len(qvar.domain) for (c,v) in
counts.items()}
dist["raw_counts”] = counts
return dist

9.9.4 Likelihood Weighting

Likelihood weighting includes a weight for each sample. Instead of rejecting
samples based on observations, likelihood weighting changes the weights of
the sample in proportion with the probability of the observation. The weight
then becomes the probability that the variable would have been rejected.

probStochSim.py — (continued)

class LikelihoodWeighting(SamplingInferenceMethod):
"""The class that queries Graphical Models using Likelihood weighting.

gm is a belief network to query

nnn

method_name = "likelihood weighting”

def __init__(self, gm=None):

SamplingInferenceMethod.__init__(self, gm)

def query(self,qgvar,obs={}, number_samples=1000, sample_order=None):
"""computes P(qvar | obs) where
gvar is a variable.
obs is a {variable:value} dictionary.
sample_order is a list of factors where factors defining the parents
come before the factors for the child.
if sample_order is None:
sample_order = self.gm.topological_sort()
self.display(2,*[v for v in sample_order
if v not in obs],sep="\t")
counts = {val:@ for val in qvar.domain}
for i in range(number_samples):
sample = {}
weight = 1.0

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

232 9. Reasoning with Uncertainty

for nvar in sample_order:
fac = self.gm.var2cpt[nvar]
if nvar in obs:
sample[nvar] = obs[nvar]
weight *= fac.get_value(sample)
else:
val = sample_one({v:fac.get_value({**sample,nvar:v}) for
v in nvar.domain})
self.display(2,val,end="\t")
sample[nvar] = val
counts[sample[qgvar]] += weight
self.display(2,weight)
tot = sum(counts.values())
as well as the distribution we also include the raw counts
dist = {c:v/tot for (c,v) in counts.items()}
dist["raw_counts”"] = counts
return dist

Exercise 9.4 Change this algorithm so that it does importance sampling using
a proposal distribution that may be different from the prior. It needs sample_one
using a different distribution and then adjust the weight of the current sample.
For testing, use a proposal distribution that only differs from the prior for a subset
of the variables. For which variables does the different proposal distribution make
the most difference?

9.9.5 Particle Filtering

In this implementation, a particle is a {variable : value} dictionary. Because
adding a new value to dictionary involves a side effect, the dictionaries are
copied during resampling.

probStochSim.py — (continued)

class ParticleFiltering(SamplingInferenceMethod):
"""The class that queries Graphical Models using Particle Filtering.

gm is a belief network to query

nnn

method_name = "particle filtering”

def __init__(self, gm=None):
SamplingInferenceMethod.__init__(self, gm)

def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
"""computes P(qvar | obs) where
gvar is a variable.
obs is a {variable:value} dictionary.
sample_order is a list of factors where factors defining the parents
come before the factors for the child.

nnn

if sample_order is None:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

164
165
166
167
168
169
170
171
172
173
174

175
176
177

178
179
180
181
182
183
184
185
186
187

189
190

191
192
193
194
195
196
197
198
199
200
201
202
203

9.9. Stochastic Simulation 233

sample_order = self.gm.topological_sort()
self.display(2,*[v for v in sample_order
if v not in obs],sep="\t")
particles = [{} for i in range(number_samples)]
for nvar in sample_order:
fac = self.gm.var2cpt[nvar]
if nvar in obs:
weights = [fac.get_value({**part, nvar:obs[nvarl})
for part in particles]
particles = [{**p, nvar:obs[nvar]}
for p in resample(particles, weights,
number_samples)]
else:
for part in particles:
part[nvar] = sample_one({v:fac.get_value({**part,
nvar:v})
for v in nvar.domain})
self.display(2,part[nvar],end="\t")
counts = {val:@ for val in qvar.domain}
for part in particles:
counts[part[gvar]] += 1
tot = sum(counts.values())
as well as the distribution we also include the raw counts
dist = {c:v/tot for (c,v) in counts.items()}
dist["raw_counts”] = counts
return dist

Resampling

Resample is based on sample_multiple but works with an array of particles.
(Aside: Python doesn’t let us use sample_multiple directly as it uses a dictionary
and particles, represented as dictionaries can’t be the key of dictionaries).

probStochSim.py — (continued)

def resample(particles, weights, num_samples):
"""returns num_samples copies of particles resampled according to
weights.
particles is a list of particles
weights is a list of positive numbers, of same length as particles
num_samples is n integer
total = sum(weights)
rands = sorted(random.random()*total for i in range(num_samples))

result = []
cum = weights[@] # cumulative sum
index = 0

for r in rands:
while r>cum:
index += 1
cum += weights[index]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

204
205

207
208
209
210

211
212
213
214
215
216
217

218

219

220
221
222
223

224
225
226
227
228
229
230
231
232
233

234

235

236
237
238
239
240
241

234 9. Reasoning with Uncertainty

result.append(particles[index])
return result

90.9.6 Examples

probStochSim.py — (continued)

from probGraphicalModels import bn_4ch, A,B,C,D

bn_4chr = RejectionSampling(bn_4ch)

bn_4chL = LikelihoodWeighting(bn_4ch)

InferenceMethod.max_display_level = 2 # detailed tracing for all
inference methods

bn_4chr.query(A,{})

bn_4chr.query(C,{})

bn_4chr.query(A,{C:True})

bn_4chr.query(B,{A:True,C:False})

from probExamples import bn_report,Alarm,Fire,Leaving,Report, Smoke, Tamper

bn_reportr = RejectionSampling(bn_report) # answers queries using
rejection sampling

bn_reportL = LikelihoodWeighting(bn_report) # answers queries using
likelihood weighting

bn_reportp = ParticleFiltering(bn_report) # answers queries using particle
filtering

bn_reportr.query(Tamper,{})

bn_reportr.query(Tamper,{})

bn_reportr.query(Tamper,{Report:True})

InferenceMethod.max_display_level = @ # no detailed tracing for all
inference methods

bn_reportr.query(Tamper,{Report:True}, number_samples=100000)

bn_reportr.query(Tamper,{Report:True,Smoke:False})

bn_reportr.query(Tamper,{Report:True,Smoke:False}, number_samples=100)

bn_reportL.query(Tamper,{Report:True,Smoke:False}, number_samples=100)
bn_reportL.query(Tamper,{Report:True,Smoke:False}, number_samples=100)

from probExamples import bn_sprinkler,Season, Sprinkler

from probExamples import Rained, Grass_wet, Grass_shiny, Shoes_wet

bn_sprinklerr = RejectionSampling(bn_sprinkler) # answers queries using
rejection sampling

bn_sprinklerL = LikelihoodWeighting(bn_sprinkler) # answers queries using
rejection sampling

bn_sprinklerp = ParticleFiltering(bn_sprinkler) # answers queries using
particle filtering

#bn_sprinklerr.query(Shoes_wet,{Grass_shiny:True,Rained:True})

#bn_sprinklerL.query(Shoes_wet,{Grass_shiny:True,Rained:True})

#bn_sprinklerp.query(Shoes_wet,{Grass_shiny:True,Rained:True})

n,

if __name__ == "__main_

InferenceMethod. testIM(RejectionSampling, threshold=0.1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

242
243

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284

9.9. Stochastic Simulation 235

InferenceMethod. testIM(LikelihoodWeighting, threshold=0.1)
InferenceMethod. testIM(ParticleFiltering, threshold=0.1)

9.9.7 Gibbs Sampling

The following implements Gibbs sampling, a form of Markov Chain Monte
Carlo MCMC.

probStochSim.py — (continued)

#import random
#from probGraphicalModels import InferenceMethod

#from probStochSim import sample_one, SamplingInferenceMethod

class GibbsSampling(SamplingInferenceMethod):
"""The class that queries Graphical Models using Gibbs Sampling.

bn is a graphical model (e.g., a belief network) to query

nnn

method_name = "Gibbs sampling”

def __init__(self, gm=None):
SamplingInferenceMethod.__init__(self, gm)
self.gm = gm

def query(self, qvar, obs={}, number_samples=1000, burn_in=100,
sample_order=None):
"""computes P(qvar | obs) where
gvar is a variable.
obs is a {variable:value} dictionary.
sample_order is a list of non-observed variables in order, or
if sample_order None, an arbitrary ordering is used
counts = {val:@ for val in qvar.domain}
if sample_order is not None:
variables = sample_order
else:
variables = [v for v in self.gm.variables if v not in obs]
random. shuffle(variables)
var_to_factors = {v:set() for v in self.gm.variables}
for fac in self.gm.factors:
for var in fac.variables:
var_to_factors[var].add(fac)
sample = {var:random.choice(var.domain) for var in variables}
self.display(3,"Sample:", sample)
sample.update(obs)
for i in range(burn_in + number_samples):
for var in variables:
get unnormalized probability distribution of var given its
neighbors
vardist = {val:1 for val in var.domain}

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

303
304
305
306
307
308
309
310
311
312
313

236 9. Reasoning with Uncertainty

for val in var.domain:
sample[var] = val
for fac in var_to_factors[var]: # Markov blanket
vardist[val] *= fac.get_value(sample)
sample[var] = sample_one(vardist)
if i >= burn_in:
counts[sample[qvar]] +=1
self.display(3,” ", sample)
tot = sum(counts.values())
as well as the computed distribution, we also include raw counts
dist = {c:v/tot for (c,v) in counts.items()}
dist["raw_counts”"] = counts
self.display(2, f"Gibbs sampling P({qvar}|{obs}) = {dist}")
return dist

#from probGraphicalModels import bn_4ch, A,B,C,D

bn_4chg = GibbsSampling(bn_4ch)

InferenceMethod.max_display_level = 2 # detailed tracing for all
inference methods

bn_4chg.query(A,{3})

bn_4chg.query(D,{})

bn_4chg.query(B,{D:True})

bn_4chg.query(B,{A:True,C:False})

from probExamples import bn_report,Alarm,Fire,Leaving,Report, Smoke, Tamper

bn_reportg = GibbsSampling(bn_report)

bn_reportg.query(Tamper,{Report:Truel}, number_samples=1000)

if __name__ == "__main__
InferenceMethod. testIM(GibbsSampling, threshold=0.1)

",

Exercise 9.5 Change the code so that it can have multiple query variables. Make
the list of query variable be an input to the algorithm, so that the default value is
the list of all non-observed variables.

Exercise 9.6 In this algorithm, explain where it computes the probability of a
variable given its Markov blanket. Instead of returning the average of the samples
for the query variable, it is possible to return the average estimate of the probabil-
ity of the query variable given its Markov blanket. Does this converge to the same
answer as the given code? Does it converge faster, slower, or the same?

9.9.8 Plotting Behavior of Stochastic Simulators

The stochastic simulation runs can give different answers each time they are
run. For the algorithms that give the same answer in the limit as the number of
samples approaches infinity (as do all of these algorithms), the algorithms can
be compared by comparing the accuracy for multiple runs. Summary statistics
like the variance may provide some information, but the assumptions behind
the variance being appropriate (namely that the distribution is approximately

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

315
316
317
318
319
320
321
322

9.9. Stochastic Simulation 237

1000

800 -

600 -

400 A

Cumulative Number

—— recursive conditioning P(Tamper=True|Report=True,Smoke=False)
rejection sampling P(Tamper=True|Report=True,Smoke=False)

—— likelihood weighting P(Tamper=True|Report=True,Smoke=False)
: : —— particle filtering P(Tamper=True|Report=True,Smoke=False)
04 —— Gibbs sampling P(Tamper=True|Report=True,Smoke=False)

0.0 0.2 0.4 0.6 0.8 1.0
value

200 A

Figure 9.7: Cumulative distribution of the prediction of various models for
P(Tamper=True | report \ —smoke)

Gaussian) may not hold for cases where the predictions are bounded and often
skewed.

It is more appropriate to plot the distribution of predictions over multiple
runs. The plot_stats method plots the prediction of a particular variable (or for
the partition function) for a number of runs of the same algorithm. On the x-
axis, is the prediction of the algorithm. On the y-axis is the number of runs
with prediction less than or equal to the x value. Thus this is like a cumulative
distribution over the predictions, but with counts on the y-axis.

Note that for runs where there are no samples that are consistent with the
observations (as can happen with rejection sampling), the prediction of proba-
bility is 1.0 (as a convention for 0/0).

That variable what contains the query variable, or if what is “prob_ev”, the
probability of evidence.

Figure 9.7/ shows the distribution of various models. This figure is gener-
ated using the first plot_mult example below. Recursive conditioning gives
the exact answer, and so is a vertical line. The others provide the cumulative
prediction for 1000 runs for each method. This graph shows that for this graph
and query, likelihood weighting is closest to the exact answer.

probStochSim.py — (continued)

import matplotlib.pyplot as plt

def plot_stats(method, qvar, qval, obs, number_runs=1000, **queryargs):
"""Plots a cumulative distribution of the prediction of the model.
method is a InferenceMethod (that implements appropriate query(.))
plots P(qvar=qval | obs)
gvar is the query variable, qval is corresponding value
obs is the {variable:value} dictionary representing the observations

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

323
324

325
326
327
328
329

330
331
332
333

334

335
336
337
338
339
340
341
342

343

344

345

346

347

348
349

350
351
352
353

354
355
356
357
358
359

238 9. Reasoning with Uncertainty

number_iterations is the number of runs that are plotted
*xqueryargs is the arguments to query (often number_samples for
sampling methods)
plt.ion()
plt.xlabel("value")
plt.ylabel("Cumulative Number™)
method.max_display_level, prev_mdl = @, method.max_display_level #no
display
answers = [method.query(qgvar,obs,**queryargs)
for i in range(number_runs)]
values = [ans[qval] for ans in answers]
label = f"""{method.method_name}
P({gvar}={qval}|{','.join(f'{var}={val}'
for (var,val) in
obs.items())})"""
values.sort()
plt.plot(values, range(number_runs),label=1abel)
plt.legend() #loc="upper left")
plt.draw()
method.max_display_level = prev_mdl # restore display level
Try:

plot_stats(bn_reportr,Tamper,True,{Report:True,Smoke:True},
number_samples=1000, number_runs=1000)

plot_stats(bn_reportL, Tamper,True,{Report:True, Smoke:True},
number_samples=1000, number_runs=1000)

plot_stats(bn_reportp,Tamper,True,{Report:True,Smoke:True},
number_samples=1000, number_runs=1000)

plot_stats(bn_reportr,Tamper,True,{Report:True,Smoke:True},
number_samples=100, number_runs=1000)

plot_stats(bn_reportL,Tamper,True,{Report:True,Smoke:True},
number_samples=100, number_runs=1000)

plot_stats(bn_reportg,Tamper,True,{Report:True, Smoke:True},
number_samples=1000, number_runs=1000)

def plot_mult(methods, example, qvar, qval, obs, number_samples=1000,
number_runs=1000) :
for method in methods:
solver = method(example)
if isinstance(method,SamplingInferenceMethod):
plot_stats(solver, gvar, qval, obs,
number_samples=number_samples, number_runs=number_runs)
else:
plot_stats(solver, gvar, qval, obs, number_runs=number_runs)

from probRC import ProbRC

Try following (but it takes a while..)

methods = [ProbRC, RejectionSampling, LikelihoodWeighting,
ParticleFiltering, GibbsSampling]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

360

361

362
363
364

365

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27

9.10. Hidden Markov Models 239

#plot_mult(methods,bn_report,Tamper,True,{Report:True,Smoke:False},
number_samples=100, number_runs=1000)

plot_mult(methods,bn_report,Tamper,True,{Report:False, Smoke:True},
number_samples=100, number_runs=1000)

Sprinkler Example:

plot_stats(bn_sprinklerr,Shoes_wet,True,{Grass_shiny:True,Rained:True},
number_samples=1000)

plot_stats(bn_sprinklerL,Shoes_wet,True,{Grass_shiny:True,Rained:True},
number_samples=1000)

0.10 Hidden Markov Models

This code for hidden Markov models (HMMs) is independent of the graphi-
cal models code, to keep it simple. Section gives code that models hid-
den Markov models, and more generally, dynamic belief networks, using the
graphical models code.

This HMM code assumes there are multiple Boolean observation variables
that depend on the current state and are independent of each other given the
state.

probHMM.py — Hidden Markov Model

import random
from probStochSim import sample_one, sample_multiple

class HMM(object):
def __init__(self, states, obsvars, pobs, trans, indist):

"""A hidden Markov model.

states - set of states

obsvars - set of observation variables

pobs - probability of observations, pobs[i][s] is P(Obs_i=True |
State=s)

trans - transition probability - trans[i][j] gives P(State=j |
State=i)

indist - initial distribution - indist[s] is P(State_0 = s)

self.states = states

self.obsvars = obsvars

self.pobs = pobs

self.trans = trans

self.indist = indist

Consider the following example. Suppose you want to unobtrusively keep
track of an animal in a triangular enclosure using sound. Suppose you have
3 microphones that provide unreliable (noisy) binary information at each time
step. The animal is either close to one of the 3 points of the triangle or in the
middle of the triangle.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

29
30
31
32

34
35
36
37

38

39

41
42
43
44
45
46

47

48

49

51
52
53
54

240 9. Reasoning with Uncertainty

probHMM.py — (continued)

state
0=middle, 1,2,3 are corners
statesl = {'middle’, 'cl1', 'c2', 'c3'} # states
obsl = {'m1','m2','m3'} # microphones

The observation model is as follows. If the animal is in a corner, it will
be detected by the microphone at that corner with probability 0.6, and will be
independently detected by each of the other microphones with a probability of
0.1. If the animal is in the middle, it will be detected by each microphone with
a probability of 0.4.

probHMM.py — (continued)

pobs gives the observation model:

#pobs[mi][state] is P(mi=on | state)

closeMic=0.6; farMic=0.1; midMic=0.4

pobs1l = {'ml1':{'middle':midMic, 'c1':closeMic, 'c2':farMic, 'c3':farMic},

mic 1
'm2':{'middle':midMic, 'c1':farMic, 'c2':closeMic, 'c3':farMic}, #
mic 2
'm3':{'middle':midMic, 'c1':farMic, 'c2':farMic, 'c3':closeMic}} #
mic 3

The transition model is as follows: If the animal is in a corner it stays in
the same corner with probability 0.80, goes to the middle with probability 0.1
or goes to one of the other corners with probability 0.05 each. If it is in the
middle, it stays in the middle with probability 0.7, otherwise it moves to one
the corners, each with probability 0.1.

probHMM.py — (continued)

trans specifies the dynamics
trans[i] is the distribution over states resulting from state i
trans[iJ[j] gives P(S=j | S=i)
sm=0.7; mmc=0.]1 # transition probabilities when in middle
sc=0.8; mcm=0.1; mcc=0.05 # transition probabilities when in a corner
transl = {'middle':{'middle':sm, 'c1':mmc, 'c2':mmc, 'c3':mmc}, # was in
middle
'c1':{'middle':mcm, 'cl1':sc, 'c2':mcc, 'c3':mcc}, # was in corner
1
'c2':{'middle':mcm, 'cl1':mcc, 'c2':sc, 'c3':mcc}, # was in corner
2
'c3':{'middle':mcm, 'c1':mcc, 'c2':mcc, 'c3':sc}} # was in corner
3

Initially the animal is in one of the four states, with equal probability.

probHMM.py — (continued)

initially we have a uniform distribution over the animal's state
indist1 = {st:1.0/len(states1) for st in statesl1}

hmm1 = HMM(states1, obs1, pobsl, transl, indist1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84

85

86
87
88
89

90
91
92
93
94

9.10. Hidden Markov Models 241

0.10.1 Exact Filtering for HMMs

A HMMVEfilter has a current state distribution which can be updated by ob-
serving or by advancing to the next time.

probHMM.py — (continued)
from display import Displayable

class HMMVEfilter(Displayable):
def __init__(self,hmm):
self.hmm = hmm
self.state_dist = hmm.indist

def filter(self, obsseq):
"""updates and returns the state distribution following the
sequence of
observations in obsseq using variable elimination.

Note that it first advances time.
This is what is required if it is called sequentially.
If that is not what is wanted initially, do an observe first.
for obs in obsseq:
self.advance() # advance time
self.observe(obs) # observe
return self.state_dist

def observe(self, obs):

"""updates state conditioned on observations.

obs is a list of values for each observation variable

for i in self.hmm.obsvars:
self.state_dist = {st:self.state_dist[st]x(self.hmm.pobs[i][st]

if obs[i] else
(1-self.hmm.pobs[i][st]))
for st in self.hmm.states?}

norm = sum(self.state_dist.values()) # normalizing constant

self.state_dist = {st:self.state_dist[st]/norm for st in
self.hmm.states}

self.display(2,"After observing"”,obs,"state
distribution:"”,self.state_dist)

nnn

def advance(self):

"""advance to the next time

nextstate = {st:0.0 for st in self.hmm.states} # distribution over
next states

for j in self.hmm.states: # j ranges over next states
for i in self.hmm.states: # i ranges over previous states

nextstate[j] += self.hmm.trans[i][jl*self.state_dist[i]

self.state_dist = nextstate

self.display(2,"After advancing state
distribution:"”,self.state_dist)

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

96
97
98
99
100

101

102

103
104
105

106
107
108
109
110
111
112
113

11
12
13
14
15
16
17

18

19

20

21

242 9. Reasoning with Uncertainty

The following are some queries for hmm1.

probHMM.py — (continued)

hmm1f1 = HMMVEfilter (hmm1)

hmm1f1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])

HMMVEfilter.max_display_level = 2 # show more detail in displaying

hmm1f2 = HMMVEfilter(hmm1)

hmm1f2.filter([{'m1':1, 'm2':0, 'm3':0}, {'ml1':0, 'm2':1, 'm3':0},
{'ml':1, 'm2':0, 'm3':0},

{'mi':0, 'm2':0, 'm3':0}, {'ml':0, 'm2':0, 'm3':0},
{'m':0, 'm2':0, 'm3':0},
{'m1"':0, 'm2':0, 'm3':0}, {'m':0, 'm2':0, 'm3':1%},

{'m"':0, 'm2':0, 'm3':1},
{'m':0, 'm2':0, 'm3':1}1)
hmm1f3 = HMMVEfilter (hmm1)
hmm1f3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
{'m':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}1)

H H H

How do the following differ in the resulting state distribution?

Note they start the same, but have different initial observations.
HMMVEfilter.max_display_level = 1 # show less detail in displaying
for i in range(100): hmmi1f1.advance()

hmm1f1.state_dist

for i in range(100): hmmi1f3.advance()

hmm1f3.state_dist

Exercise 9.7 The representation assumes that there are a list of Boolean obser-
vations. Extend the representation so that the each observation variable can have
multiple discrete values. You need to choose a representation for the model, and
change the algorithm.

0.10.2 Localization

The localization example in the book is a controlled HMM, where there is a
given action at each time and the transition depends on the action.

probLocalization.py — Controlled HMM and Localization example
from probHMM import HMMVEfilter, HMM

from display import Displayable

import matplotlib.pyplot as plt

from matplotlib.widgets import Button, CheckButtons

class HMM_Controlled(HMM):
"""A controlled HMM, where the transition probability depends on the
action.
Instead of the transition probability, it has a function act2trans
from action to transition probability.
Any algorithms need to select the transition probability according
to the action.

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54

55

57
58
59
60

9.10. Hidden Markov Models 243

def __init__(self, states, obsvars, pobs, act2trans, indist):
self.act2trans = act2trans
HMM.__init__(self, states, obsvars, pobs, None, indist)

local_states = list(range(16))
door_positions = {2,4,7,11}
def prob_door(loc): return 0.8 if loc in door_positions else 0.1
local_obs = {'door':[prob_door(i) for i in range(16)1}
act2trans = {'right': [[@.1 if next == current
else 0.8 if next == (current+1)%16
else 0.074 if next == (current+2)%16
else 0.002 for next in range(16)]
for current in range(16)],
'left': [[0.1 if next == current
else 0.8 if next == (current-1)%16
else 0.074 if next == (current-2)%16
else 0.002 for next in range(16)]
for current in range(16)]}
hmm_16pos = HMM_Controlled(local_states, {'door'}, local_obs,
act2trans, [1/16 for i in range(16)]1)

To change the VE localization code to allow for controlled HMMs, notice
that the action selects which transition probability to us.

probLocalization.py — (continued)

class HMM_Local (HMMVEfilter):
"""VE filter for controlled HMMs
def __init__(self, hmm):
HMMVEfilter.__init__(self, hmm)

def go(self, action):
self.hmm.trans = self.hmm.act2trans[action]
self.advance()

loc_filt = HMM_Local (hmm_16pos)

loc_filt.observe({'door':True}); loc_filt.go("right");
loc_filt.observe({'door':False}); loc_filt.go("right");
loc_filt.observe({'door':True})

loc_filt.state_dist

The following lets us interactively move the agent and provide observa-
tions. It shows the distribution over locations. Figure [9.8 shows the GUI ob-
tained by Show_Localization(hmm_16pos) after some interaction.

probLocalization.py — (continued)

class Show_Localization(Displayable):
def __init__(self, hmm, fontsize=10):
self.hmm = hmm
self.fontsize = fontsize

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

244

Figure 9.8: Localization GUI after observing a door, moving right, observing no

Probability

9. Reasoning with Uncertainty

Location Probability Distribution

1.0

0.8 1

o
[¢)]
1

0.42

©
H
1

0.2 1

0.05
0.010.01

0.0 -

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location

door, moving right, and observing a door.

https://aipython.org Version 0.9.15 December 23, 2024

self.loc_filt = HMM_Local (hmm)

fig, (self.ax) = plt.subplots()
plt.subplots_adjust(bottom=0.2)

Set up buttons:

left_butt = Button(plt.axes([0.05,0.02,0.1,0.05]), "left")
left_butt.label.set_fontsize(self.fontsize)
left_butt.on_clicked(self.left)

right_butt = Button(plt.axes([0.25,0.02,0.1,0.05]), "right")
right_butt.label.set_fontsize(self.fontsize)
right_butt.on_clicked(self.right)

door_butt = Button(plt.axes([0.45,0.02,0.1,0.05]), "door")
door_butt.label.set_fontsize(self.fontsize)
door_butt.on_clicked(self.door)

nodoor_butt = Button(plt.axes([0.65,0.02,0.1,0.05]), "no door")
nodoor_butt.label.set_fontsize(self.fontsize)
nodoor_butt.on_clicked(self.nodoor)

reset_butt = Button(plt.axes([0.85,0.02,0.1,0.05]), "reset"”)
reset_butt.label.set_fontsize(self.fontsize)
reset_butt.on_clicked(self.reset)

draw the distribution

plt.subplot(l, 1, 1)

self.draw_dist()

https://aipython.org

83
84
85
86
87
88
89
90

91
92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

9.10. Hidden Markov Models 245

plt.show()

def draw_dist(self):

self.ax.clear()

plt.ylim(@,1)

plt.ylabel("Probability"”, fontsize=self.fontsize)

plt.xlabel("Location”, fontsize=self.fontsize)

plt.title("Location Probability Distribution”,
fontsize=self.fontsize)

plt.xticks(self.hmm.states,fontsize=self.fontsize)

plt.yticks(fontsize=self.fontsize)

vals = [self.loc_filt.state_dist[i] for i in self.hmm.states]

self.bars = self.ax.bar(self.hmm.states, vals, color='black')

self.ax.bar_label(self.bars,["{v:.2f}".format(v=v) for v in vals],
padding = 1, fontsize=self.fontsize)

plt.draw()

def left(self,event):
self.loc_filt.go("left")
self.draw_dist()

def right(self,event):
self.loc_filt.go("right")
self.draw_dist()

def door(self,event):
self.loc_filt.observe({'door':True})
self.draw_dist()

def nodoor(self,event):
self.loc_filt.observe({'door':False})
self.draw_dist()

def reset(self,event):
self.loc_filt.state_dist = {i:1/16 for i in range(16)}
self.draw_dist()

Show_Localization(hmm_16pos)
Show_Localization(hmm_16pos, fontsize=15) # for demos - enlarge window

n

if __name__ == main_

print("Try: Show_Localization(hmm_16pos)")

n,

9.10.3 Particle Filtering for HMMs

In this implementation, a particle is just a state. If you want to do some form
of smoothing, a particle should probably be a history of states. This maintains,
particles, an array of states, weights an array of (non-negative) real numbers,
such that weights[i] is the weight of particles[i].

probHMM.py — (continued)

114 | from display import Displayable

115

from probStochSim import resample

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155
156
157
158
159
160
161
162

246 9. Reasoning with Uncertainty

class HMMparticleFilter(Displayable):
def __init__(self,hmm,number_particles=1000):
self.hmm = hmm
self.particles = [sample_one(hmm.indist)
for i in range(number_particles)]
self.weights = [1 for i in range(number_particles)]

def filter(self, obsseq):
"""returns the state distribution following the sequence of
observations in obsseq using particle filtering.

Note that it first advances time.
This is what is required if it is called after previous filtering.
If that is not what is wanted initially, do an observe first.
for obs in obsseq:

self.advance() # advance time

self.observe(obs) # observe

self.resample_particles()

self.display(2,"After observing”, str(obs),

"state distribution:”,
self.histogram(self.particles))

self.display(1,"Final state distribution:",

self.histogram(self.particles))
return self.histogram(self.particles)

def advance(self):
"""advance to the next time.
This assumes that all of the weights are 1.
self.particles = [sample_one(self.hmm.trans[st])
for st in self.particles]

nnn

def observe(self, obs):
"""reweighs the particles to incorporate observations obs
for i in range(len(self.particles)):
for obv in obs:
if obs[obv]:
self.weights[i] *= self.hmm.pobs[obv][self.particles[i]]
else:
self.weights[i] %=
1-self.hmm.pobs[obv][self.particles[i]]

nnn

def histogram(self, particles):
"""returns list of the probability of each state as represented by
the particles""”
tot=0
hist = {st: 0.0 for st in self.hmm.states}
for (st,wt) in zip(self.particles,self.weights):
hist[st]+=wt

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

163
164
165
166
167
168

169

171
172
173
174
175

176

177

178
179
180

182
183

184
185
186
187
188

9.10. Hidden Markov Models 247

tot += wt
return {st:hist[st]/tot for st in hist}

def resample_particles(self):
"""resamples to give a new set of particles.
self.particles = resample(self.particles, self.weights,
len(self.particles))
self.weights = [1] * len(self.particles)

nnn

The following are some queries for hmm1.

probHMM.py — (continued)

hmm1pf1 = HMMparticleFilter (hmm1)
HMMparticleFilter.max_display_level = 2 # show each step

hmmipf1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])

hmm1pf2 = HMMparticleFilter (hmm1)

hmmipf2.filter([{'Mm1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':1, 'm3':0},
{'m':1, 'm2':0, 'm3':0},

{'ml':0, 'm2':0, 'm3':0}, {'ml':0, 'm2':0, 'm3':0},
{'m':0, 'm2':0, 'm3':0},

{'m"':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':1},

{'m1"':0, 'm2':0, 'm3':1},
{'ml':0, 'm2':0, 'm3':1}1)
hmm1pf3 = HMMparticleFilter(hmm1)
hmm1pf3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':03},
{'m':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}1)

H OH

Exercise 9.8 A form of importance sampling can be obtained by not resampling.
Is it better or worse than particle filtering? Hint: you need to think about how
they can be compared. Is the comparison different if there are more states than
particles?

Exercise 9.9 Extend the particle filtering code to continuous variables and ob-
servations. In particular, suppose the state transition is a linear function with
Gaussian noise of the previous state, and the observations are linear functions
with Gaussian noise of the state. You may need to research how to sample from a
Gaussian distribution (or use Python’s random library) .

9.10.4 Generating Examples
The following code is useful for generating examples.

probHMM.py — (continued)

def simulate(hmm,horizon):
"""returns a pair of (state sequence, observation sequence) of length
horizon.
for each time t, the agent is in state_sequence[t] and
observes observation_sequence[t]
state = sample_one(hmm.indist)
obsseq=[]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

189
190
191
192

193
194
195
196
197
198
199
200
201
202

203
204
205
206
207
208
209
210
211
212
213
214

248 9. Reasoning with Uncertainty

stateseqg=[]
for time in range(horizon):
stateseq.append(state)
newobs =
{obs:sample_one({@:1-hmm.pobs[obs][state],1:hmm.pobs[obs][statel})
for obs in hmm.obsvars}
obsseq. append(newobs)
state = sample_one(hmm.trans[state])
return stateseq,obsseq

def simobs(hmm,stateseq):
"""returns observation sequence for the state sequence
obsseqg=[]
for state in stateseq:
newobs =
{obs:sample_one({@:1-hmm.pobs[obs][state],1:hmm.pobs[obs][statel})
for obs in hmm.obsvars}
obsseq. append(newobs)
return obsseq

nnn

def create_eg(hmm,n):
"""Create an annotated example for horizon n
seq,obs = simulate(hmm,n)
print("True state sequence:"”,seq)
print(”"Sequence of observations:\n",obs)
hmmfilter = HMMVEfilter (hmm)
dist = hmmfilter.filter(obs)
print("Resulting distribution over states:\n",dist)

nnn

9.11 Dynamic Belief Networks

A dynamic belief network (DBN) is a belief network that extends in time.
There are a number of ways that reasoning can be carried out in a DBN,
including:

¢ Rolling out the DBN for some time period, and using standard belief net-
work inference. The latest time that needs to be in the rolled out network
is the time of the latest observation or the time of a query (whichever is
later). This allows us to observe any variables at any time and query any
variables at any time. This is covered in Section[9.11.2]

¢ An unrolled belief network may be very large, and we might only be in-
terested in asking about “now”. In this case we can just representing the
variables “now”. In this approach we can observe and query the current
variables. We can them move to the next time. This does not allow for
arbitrary historical queries (about the past or the future), but can be much
simpler. This is covered in Section[9.11.3]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

9.11. Dynamic Belief Networks 249

0.11.1 Representing Dynamic Belief Networks

To specify a DBN, consider an arbitrary point, now, which will will be repre-
sented as time 1. Each variable will have a corresponding previous variable;
the variables and their previous instances will be created together.

A dynamic belief network consists of:

¢ A set of features. A variable is a feature-time pair.

¢ An initial distribution over the features “now” (time 1). This is a belief
network with all variables being time 1 variables.

* A specification of the dynamics. We define the how the variables now
(time 1) depend on variables now and the previous time (time 0), in such
a way that the graph is acyclic.

probDBN.py — Dynamic belief networks
from variable import Variable

from probGraphicalModels import GraphicalModel, BeliefNetwork
from probFactors import Prob, Factor, CPD

from probVE import VE

from display import Displayable

class DBNvariable(Variable):
"""A random variable that incorporates the stage (time)

A DBN variable has both a name and an index. The index defaults to 1.
position is (x,y) where x>0.3
def __init__(self, name, domain=[False,True], index=1, position=None):
Variable.__init__(self, f"{name}_{index}", domain,
position=position)
self.basename = name
self.domain = domain
self.index = index
self.previous = None

def __1t__(self,other):

if self.name == other.name:
return self.index < other.index
else:

return self.name < other.name

def variable_pair(name, domain=[False,Truel], position=None):
"""returns a variable and its predecessor. This is used to define
2-stage DBNs
If the name is X, it returns the pair of variables X_prev,X_now"""
var_now = DBNvariable(name, domain, index='now', position=position)
if position:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

42
43
44
45
46

48
49
50
51
52

53
54
55

56
57
58
59
60
61
62

64
65
66
67

68
69

71
72
73
74
75
76

250 9. Reasoning with Uncertainty

(x,y) = position

position = (x-0.3, y)
var_prev = DBNvariable(name, domain, index='prev', position=position)
var_now.previous = var_prev
return var_prev, var_now

A FactorRename is a factor that is the result of renaming the variables in the
factor. It takes a factor, fac, and a {new : old} dictionary, where new is the name
of a variable in the resulting factor and old is the corresponding name in fac.
This assumes that all variables are renamed.

probDBN.py — (continued)

class FactorRename(Factor):
def __init__(self,fac,renaming):
"""A renamed factor.
fac is a factor
renaming is a dictionary of the form {new:o0ld} where old and new
var variables,
where the variables in fac appear exactly once in the renaming
Factor.__init__(self,[n for (n,0) in renaming.items() if o in
fac.variables])
self.orig_fac = fac
self.renaming = renaming

def get_value(self,assignment):
return self.orig_fac.get_value({self.renaming[var]:val
for (var,val) in assignment.items()
if var in self.variables})

The following class renames the variables of a conditional probability distri-
bution. It is used for template models (e.g., dynamic decision networks or
relational models)

probDBN.py — (continued)

class CPDrename(FactorRename, CPD):
def __init__(self, cpd, renaming):
renaming_inverse = {old:new for (new,o0ld) in renaming.items()}
CPD.__init__(self,renaming_inverse[cpd.child], [renaming_inverse[p]
for p in cpd.parents])
self.orig_fac = cpd
self.renaming = renaming

probDBN.py — (continued)
class DBN(Displayable):

"""The class of stationary Dynamic Belief networks.

* name is the DBN name

* vars_now is a list of current variables (each must have

previous variable).

* transition_factors is a list of factors for P(X|parents) where X

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

77

78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94

96
97
98
99
100
101
102

9.11. Dynamic Belief Networks

Simple DBN

G

@ @

Figure 9.9: Simple dynamic belief network (dbn1.

251

show())

is a current variable and parents is a list of current or previous

variables.

* init_factors is a list of factors for P(X|parents) where X is a

current variable and parents can only include current

variables

The graph of transition factors + init factors must be acyclic.

nnn

def __init__(self, title, vars_now, transition_factors=None,

init_factors=None):

self.title = title

self.vars_now = vars_now

self.vars_prev = [v.previous for v in vars_now]
self.transition_factors = transition_factors
self.init_factors = init_factors

self.var_index = {} # var_index[v] is the index of variable v

for i,v in enumerate(vars_now):
self.var_index[v]=i

def show(self):
BNfromDBN(self,1).show()

Here is a 3 variable DBN (shown in Figure[9.9):

probDBN.py — (continued)
AQ,A1 = variable_pair("A", domain=[False,True], position
B0,B1 = variable_pair(”"B", domain=[False,True], position
C0,C1 = variable_pair("C", domain=[False,True], position

dynamics
pc = Prob(C1,[B1,C0],[[[0.03,0.97],[0.38,0.62]1,[[0.23,0.
pb = Prob(B1,[A@,A1],[[[0.5,0.5],[0.77,0.23]1],[[0.4,0.6],

https://aipython.org Version 0.9.15

= (0.4,0.8))
(0.4,0.5))
(0.4,0.2))

771,00.78,0.22111)
[0.83,0.1711])

December 23, 2024

https://aipython.org

103
104
105
106
107
108
109
110

112
113
114

115
116
117
118
119
120
121
122
123

252 9. Reasoning with Uncertainty

Animal DBN

Position_0

Position_1

Figure 9.10: Animal dynamic belief network (dbn_an.show())

pa = Prob(Al,[A0,Be],[[[0.1,0.9],[0.65,0.35]11,[[0.3,0.7],[0.8,0.2111)

initial distribution

pad = Prob(A1,[]1,[0.9,0.1])
pb@ = Prob(B1,[A1],[[0.3,0.7],[0.8,0.2]11)
pcd = Prob(C1,[]1,[0.2,0.8])

dbn1 = DBN("Simple DBN",[A1,B1,C1],[pa,pb,pcl,[pa@,pbd,pcd])
Here is the animal example

probDBN.py — (continued)

from probHMM import closeMic, farMic, midMic, sm, mmc, sc, mcm, mcc

Pos_0,Pos_1 = variable_pair("Position”, domain=[0,1,2,3],
position=(0.5,0.8))

Mic1_0,Mic1_1 = variable_pair(”"Mic1”, position=(0.6,0.6))

Mic2_0,Mic2_1 = variable_pair("Mic2", position=(0.6,0.4))

Mic3_0,Mic3_1 = variable_pair("Mic3"”, position=(0.6,0.2))

)

conditional probabilities - see hmm for the values of sm,mmc, etc
ppos = Prob(Pos_1, [Pos_0],

[[sm, mmc, mmc, mmc], #was in middle

[mcm, sc, mcc, mcc], #was in corner 1

[mcm, mcc, sc, mcc], #was in corner 2

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142

143
144
145
146
147

148
149
150
151
152
153
154
155
156
157
158

159
160

161
162
163
164
165

9.11. Dynamic Belief Networks

[mecm, mcc, mcc, sc]]) #was in corner 3
Prob(Mic1_1, [Pos_1], [[1-midMic, midMic], [1-closeMic, closeMic],

pm1

pm2

pm3

Lppos, pm1,
[ipos, pml,

253

[1-farMic, farMic], [1-farMic, farMic]]l)

Prob(Mic2_1, [Pos_1]1, [[1-midMic, midMic], [1-farMic, farMic],

[1-closeMic, closeMic], [1-farMic, farMic]l)

Prob(Mic3_1, [Pos_11, [[1-midMic, midMic], [1-farMic, farMic],

[1-farMic, farMic], [1-closeMic, closeMic]])
ipos = Prob(Pos_1,[], [0.25, 0.25, 0.25, 0.25])
dbn_an =DBN("Animal DBN",[Pos_1,Mic1_1,Mic2_1,Mic3_1],

pm2, pm3],
pm2, pm3])

9.11.2 Unrolling DBNs

probDBN.py — (continued)

class BNfromDBN(BeliefNetwork):
"""Belief Network unrolled from a dynamic belief network

nnn

def __init__(self,dbn,horizon):
"""dbn is the dynamic belief network being unrolled
horizon>0 is the number of steps (so there will be horizon+1

variables f

nnn

self.dbn = dbn
self.horizon =

or each DBN variable.

horizon

self.minx,self.width = None, None # for positions pf variables

self.name2var =

{var.basename:

[DBNvariable(var.basename,var.domain, index,

self.display(1,f"name2var={self.name2var}")

position=self.pos(var,index))

for index in range(horizon+1)]

for var in dbn.vars_now}

variables = {v for vs in self.name2var.values() for v in vs}
self.display(1,f"variables={variables}")
bnfactors = {CPDrename(fac,{self.name2var[var.basename][@]:var
for var in fac.variables?})

for fac in dbn.init_factors}

bnfactors |= {CPDrename(fac,{self.name2var[var.basename][i]:var
for var in fac.variables if
var.index=="'prev'}
| {self.name2var[var.basename][i+1]:var
for var in fac.variables if
var.index=="now'})
for fac in dbn.transition_factors

for i in range(horizon)}

self.display(1,f"bnfactors={bnfactors}")
BeliefNetwork.__init__(self, dbn.title, variables, bnfactors)

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

254 9. Reasoning with Uncertainty

Simple DBN observed: {B_0: True, C_1: False}

AO
False: 0.967
True: 0.033

Al
False: 0.704
True: 0.296

A2
False: 0.483
True: 0.517

B 1
False: 0.401
True: 0.599

B 2
False: 0.634
True: 0.366

B_0=True

CoO
False: 0.049

C2
False: 0.103
True: 0.897

(C_1=False }

True: 0.951

Figure 9.11: Simple dynamic belief network (dbn1) horizon 2

166 def pos(self, var, index):

167 minx = min(x for (x,y) in (var.position for var in
self.dbn.vars_now))-1e-6

168 maxx = max(x for (x,y) in (var.position for var in
self.dbn.vars_now))

169 width = maxx-minx

170 X0,y0 = var.position

171 xi = index/(self.horizon+1)+(xo-minx)/width/(self.horizon+1)/2

172 return (xi, yo)

Here are two examples. You use bn.name2var['B'1[2] to get the variable
B2 (B at time 2). Figure shows the output of the drc. show_post below:

probDBN.py — (continued)

174 |# Try

175 | from probRC import ProbRC
176 |# bn = BNfromDBN(dbn1,2) # construct belief network

177 |# drc = ProbRC(bn) # initialize recursive conditioning

178 |# B2 = bn.name2var['B'][2]

179 |# drc.query(B2) #P(B2)

180 |#

drc.query(bn.name2var['B'][1],{bn.name2var['B']1[0]:True,bn.name2var['C'][1]:False})
#P(B1|b0, "c1)

181 |# drc.show_post({bn.name2var['B']J[@]:True,bn.name2var['C'J[1]:False})

182

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

9.11. Dynamic Belief Networks 255

183 |# Plot Distributions:
184 |# bna = BNfromDBN(dbn_an,5) # animal belief network with horizon 5
185 |# dra = ProbRC(bna)
186 |# dra.show_post(obs =
{bna.name2var['Mic1']1[1]:True,bna.name2var['Mic1']1[2]:True})

9.11.3 DBN Filtering

If we only wanted to ask questions about the current state, we can save space
by forgetting the history variables.

probDBN.py — (continued)

188 | class DBNVEfilter(VE):

189 def __init__(self,dbn):

190 self.dbn = dbn

191 self.current_factors = dbn.init_factors

192 self.current_obs = {}

193

194 def observe(self, obs):

195 """updates the current observations with obs.

196 obs is a variable:value dictionary where variable is a current

197 variable.

198 e

199 assert all(self.current_obs[var]==obs[var] for var in obs

200 if var in self.current_obs),"inconsistent current
observations”

201 self.current_obs.update(obs) # note 'update' is a dict method

202

203 def query(self,var):

204 """returns the posterior probability of current variable var”"""

205 return
VE(GraphicalModel(self.dbn.title,self.dbn.vars_now,self.current_factors)

206).query(var,self.current_obs)

207

208 def advance(self):

209 """advance to the next time"""

210 prev_factors = [self.make_previous(fac) for fac in
self.current_factors]

211 prev_obs = {var.previous:val for var,val in
self.current_obs.items()}

212 two_stage_factors = prev_factors + self.dbn.transition_factors

213 self.current_factors =
self.elim_vars(two_stage_factors,self.dbn.vars_prev,prev_obs)

214 self.current_obs = {}

215

216 def make_previous(self,fac):

217 """Creates new factor from fac where the current variables in fac

218 are renamed to previous variables.

219 e

220 return FactorRename(fac, {var.previous:var for var in

fac.variables})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

221
222
223
224
225

226
227
228

230
231
232
233
234
235
236
237
238

256 9. Reasoning with Uncertainty

def elim_vars(self,factors, vars, obs):
for var in vars:
if var in obs:
factors = [self.project_observations(fac,obs) for fac in
factors]
else:
factors = self.eliminate_var(factors, var)
return factors

Example queries:

probDBN.py — (continued)

#df = DBNVEfilter(dbn1)

#df.observe({B1:True}); df.advance(); df.observe({C1:False})
#df.query(B1) #P(B1|B0,C1)

#df.advance(); df.query(B1)

#dfa = DBNVEfilter(dbn_an)

dfa.observe({Mic1_1:0, Mic2_1:1, Mic3_1:13})

dfa.advance()

dfa.observe({Mic1_1:1, Mic2_1:0, Mic3_1:1})

dfa.query(Pos_1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

28

Chapter 10

Learning with Uncertainty

10.1 Bayesian Learning

The section contains two implementations of the (discretized) beta distribution.
The first represents Bayesian learning as a belief network. The second is an
interactive tool to understand the beta distribution.

The following uses a belief network representation from the previous chap-
ter to learn (discretized) probabilities. Figure shows the output after ob-
serving heads, heads, tails. Notice the prediction of future tosses.

learnBayesian.py — Bayesian Learning

from variable import Variable

from probFactors import Prob

from probGraphicalModels import BeliefNetwork
from probRC import ProbRC

##t## Coin Toss #Hit#
multiple coin tosses:
toss = ['tails', 'heads']
tosses = [Variable(f"Toss#{i}", toss,
(0.8, 0.9-i/10) if i<10 else (0.4,0.2))
for i in range(11)]

def coinTossBN(num_bins = 10):

prob_bins = [x/num_bins for x in range(num_bins+1)]

PH = Variable("P_heads"”, prob_bins, (0.1,0.9))

p_PH = Prob(PH,[],{x:0.5/num_bins if x in [@,1] else 1/num_bins for x
in prob_bins})

p_tosses = [Prob(tosses[i],[PH], {x:{'tails':1-x, 'heads':x} for x in
prob_bins})

for i in range(11)]

257

258 10. Learning with Uncertainty

Coin Tosses observed: {Toss#0: 'heads', Toss#1: 'heads', Toss#2: 'tails'}

Figure 10.1: coinTossBN after observing heads, heads, tails

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45
46

10.1. Bayesian Learning 259

Beta Distribution

B
o

— 12 heads; 4 tails
—— 3 heads; 1 tails
6 heads; 2 tails

Probability
= A
w o w o w

=
o
1

o©
w
1

©
o
1

0.0 0.2 0.4 0.6 0.8 1.0
P(Heads)

heads tails save reset

Figure 10.2: Beta distribution after some observations

return BeliefNetwork(”Coin Tosses”,
[PH]+tosses,
[p_PH]+p_tosses)

coinRC = ProbRC(coinTossBN(20))
coinRC.query(tosses[10],{tosses[@]: 'heads'})

coinRC. show_post({})

coinRC.show_post({tosses[@]: 'heads'?})
coinRC.show_post({tosses[@]: 'heads"', tosses[1]: 'heads'})

coinRC.show_post ({tosses[0]: 'heads',tosses[1]: 'heads',tosses[2]:'tails'})

Figure shows a plot of the Beta distribution (the P_head variable in the
previous belief network) given some sets of observations.
This is a plot that is produced by the following interactive tool.

H o H O H HH

learnBayesian.py — (continued)
from display import Displayable
import matplotlib.pyplot as plt
from matplotlib.widgets import Button, CheckButtons

class Show_Beta(Displayable):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95

260

10. Learning with Uncertainty

__init__(self,num=100, fontsize=10):

self.num = num

self.dist = [1 for i in range(num)]

self.vals = [i/num for i in range(num)]

self.fontsize = fontsize

self.saves = []

self.num_heads = 0

self.num_tails = @

plt.ioff()

fig, (self.ax) = plt.subplots()
plt.subplots_adjust(bottom=0.2)

Set up buttons:

heads_butt = Button(plt.axes([0.05,0.02,0.1,0.05]), "heads")
heads_butt.label.set_fontsize(self.fontsize)
heads_butt.on_clicked(self.heads)

tails_butt = Button(plt.axes([0.25,0.02,0.1,0.05]), "tails")
tails_butt.label.set_fontsize(self.fontsize)
tails_butt.on_clicked(self.tails)

save_butt = Button(plt.axes([0.45,0.02,0.1,0.05]), "save")
save_butt.label.set_fontsize(self.fontsize)
save_butt.on_clicked(self.save)

reset_butt = Button(plt.axes([0.85,0.02,0.1,0.05]), "reset"”)
reset_butt.label.set_fontsize(self.fontsize)
reset_butt.on_clicked(self.reset)

draw the distribution

plt.subplot(1, 1, 1)

self.draw_dist()

plt.show()

def draw_dist(self):

sv = self.num/sum(self.dist)
self.dist = [vxsv for v in self.dist]
#print(self.dist)
self.ax.clear()
plt.ylabel("Probability"”, fontsize=self.fontsize)
plt.xlabel("P(Heads)", fontsize=self.fontsize)
plt.title("Beta Distribution”, fontsize=self.fontsize)
plt.xticks(fontsize=self.fontsize)
plt.yticks(fontsize=self.fontsize)
self.ax.plot(self.vals, self.dist, color='black', label =
f"{self.num_heads} heads; {self.num_tails} tails")
for (nh,nt,d) in self.saves:
self.ax.plot(self.vals, d, label = f"{nh} heads; {nt} tails”)
self.ax.legend()
plt.draw()

def heads(self,event):

self.num_heads += 1
self.dist = [self.dist[i]xself.vals[i] for i in range(self.num)]
self.draw_dist()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

11
12
13
14
15
16

10.2. K-means 261

def tails(self,event):
self.num_tails += 1
self.dist = [self.dist[i]x(1-self.vals[i]) for i in range(self.num)]
self.draw_dist()

def save(self,event):
self.saves.append((self.num_heads,self.num_tails,self.dist))
self.draw_dist()

def reset(self,event):
self.num_tails = @
self.num_heads = @
self.dist = [1/self.num for i in range(self.num)]
self.draw_dist()

s1 = Show_Beta(100)
sl = Show_Beta(100, fontsize=15) # for demos - enlarge window
if __name__ == "__main__":

print("Try: Show_Beta(100)")

10.2 K-means

The k-means learner takes in a dataset and a number of classes, and learns a
mapping from examples to classes (class_of_eg) and a function that makes
predictions for classes (class_predictions).

It maintains two lists that suffice as sufficient statistics to classify examples,
and to learn the classification:

e class_counts is a list such that class_counts[c] is the number of examples in
the training set with class = c.

e feature_sum is a list such that feature_sum|f][c] is sum of the values for the
feature f for members of class c. The average value of the ith feature in
classiis

feature_sumli][c]
class_counts|c]

when class_counts|c] > 0 and is 0 otherwise.

The class is initialized by randomly assigning examples to classes, and updat-
ing the statistics for class_counts and feature_sum.

learnKMeans.py — k-means learning

from learnProblem import Data_set, Learner, Data_from_file
import random
import matplotlib.pyplot as plt

class K_means_learner(Learner):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

17
18
19
20
21
22
23
24
25
26

27
28
29
30

31
32
33
34
35

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

262 10. Learning with Uncertainty

def __init__(self,dataset, num_classes):
self.dataset = dataset
self.num_classes = num_classes
self.random_initialize()
self.max_display_level = 5

def random_initialize(self):
class_counts[c] is the number of examples with class=c
self.class_counts = [@]#self.num_classes
feature_sum[f][c] is the sum of the values of feature f for class
c
self.feature_sum = {feat:[0@]*self.num_classes
for feat in self.dataset.input_features}
for eg in self.dataset.train:
cl = random.randrange(self.num_classes) # assign eg to random
class
self.class_counts[cl] += 1
for feat in self.dataset.input_features:
self.feature_sum[feat][cl] += feat(eg)
self.num_iterations = @
self.display(1,"Initial class counts: ",self.class_counts)

The distance from (the mean of) a class to an example is the sum, over all
features, of the sum-of-squares differences of the class mean and the example
value.

learnKMeans.py — (continued)

def distance(self,cl,eg):
"""distance of the eg from the mean of the class
return sum((self.class_prediction(feat,cl)-feat(eg))**2
for feat in self.dataset.input_features)

nnn

def class_prediction(self,feat,cl):
"""nrediction of the class cl on the feature with index feat_ind"""
if self.class_counts[cl] ==
return @ # arbitrary prediction
else:
return self.feature_sum[feat][cl]/self.class_counts[cl]

def class_of_eg(self,eg):
"""class to which eg is assigned”"”
return (min((self.distance(cl,eg),cl)
for cl in range(self.num_classes)))[1]
second element of tuple, which is a class with minimum
distance

One step of k-means updates the class_counts and feature_sum. It uses the old
values to determine the classes, and so the new values for class_counts and
feature_sum. At the end it determines whether the values of these have changes,
and then replaces the old ones with the new ones. It returns an indicator of
whether the values are stable (have not changed).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

55
56
57
58
59
60

61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96

10.2. K-means 263

learnKMeans.py — (continued)

def k_means_step(self):
"""Updates the model with one step of k-means.
Returns whether the assignment is stable.
new_class_counts = [@]*self.num_classes
feature_sum[f][c] is the sum of the values of feature f for class
o
new_feature_sum = {feat: [@]*self.num_classes
for feat in self.dataset.input_features?}
for eg in self.dataset.train:
cl = self.class_of_eg(eg)
new_class_counts[cl] += 1
for feat in self.dataset.input_features:
new_feature_sum[feat][cl] += feat(eg)
stable = (new_class_counts == self.class_counts) and
(self.feature_sum == new_feature_sum)
self.class_counts = new_class_counts
self.feature_sum = new_feature_sum
self.num_iterations += 1
return stable

def learn(self,n=100):

"""do n steps of k-means, or until convergence

i=0

stable = False

while i<n and not stable:
stable = self.k_means_step()
i+=1
self.display(1,"Iteration”,self.num_iterations,

"class counts: ",self.class_counts,”
Stable=",stable)

nnn

return stable

def show_classes(self):
"""sorts the data by the class and prints in order.
For visualizing small data sets
class_examples = [[] for i in range(self.num_classes)]
for eg in self.dataset.train:
class_examples[self.class_of_eg(eg)].append(eg)
print(”Class"”,"Example”,sep="\t"')
for cl in range(self.num_classes):
for eg in class_examples[cl]:
print(cl,*eg,sep="\t")

Figure shows multiple runs for Example 10.5 in Section 10.3.1 of Poole
and Mackworth| [2023]. Note that the y-axis is sum of squares of the values,
which is the square of the Euclidian distance. K-means can stabilize on a dif-

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

97
98

99
100
101
102
103
104
105
106
107
108

264 10. Learning with Uncertainty

12 A —— 2 classes. Training set
2 classes. Training set
—— 2 classes. Training set
10 —— 3 classes. Training set
5 —— 3 classes. Training set
o
n 81
g
©
>
O
¢
5 61
€
=}
7]
2 -

4 6 8
step

o
N

Figure 10.3: k-means plotting error.

ferent assignment each time it is run. The first run with 2 classes shown in the
figure was stable after the first step. The next two runs with 3 classes started
with different assignments, but stabilized on the same assignment. (You can-
not check if it is the same assignment from the graph, but need to check the
assignment of examples to classes.) The second run with 3 classes took tow
steps to stabilize, but the other only took one. Note that the algorithm only
determines that it is stable with one more run.

learnKMeans.py — (continued)

def plot_error(self, maxstep=20):

"""Plots the sum-of-squares error as a function of the number of
steps"""

plt.ion()

plt.xlabel("step")

plt.ylabel("Ave sum-of-squares error")

train_errors = []

if self.dataset.test:
test_errors = []

for i in range(maxstep):
train_errors.append(sum(self.distance(self.class_of_eg(eg),eg)

for eg in self.dataset.train)
/len(self.dataset.train))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

109
110

111
112
113
114
115
116
117
118
119
120
121
122

123
124

125
126
127
128
129
130
131
132
133
134
135

136
137
138
139

10.2. K-means 265

if self.dataset.test:
test_errors.append(
sum(self.distance(self.class_of_eg(eg),eg)
for eg in self.dataset.test)
/len(self.dataset.test))
self.learn(1)
plt.plot(range(maxstep), train_errors,
label=str(self.num_classes)+" classes. Training set")
if self.dataset.test:
plt.plot(range(maxstep), test_errors,
label=str(self.num_classes)+" classes. Test set”)
plt.legend()
plt.draw()

data = Data_from_file('data/emdatal.csv', num_train=10,
target_index=2000) # trivial example

data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)

data = Data_from_file('data/emdata@.csv', num_train=14,
target_index=2000) # example from textbook

kml = K_means_learner(data,?2)

num_iter=4

print(”"Class assignment after”,num_iter,"iterations:")

kml.learn(num_iter); kml.show_classes()

Plot the error

km2=K_means_learner(data,2); km2.plot_error(10) # 2 classes
km3=K_means_learner(data,3); km3.plot_error(10) # 3 classes
km13=K_means_learner(data,10); km13.plot_error(10) # 10 classes

H ¥ H H

E=3

data = Data_from_file('data/carbool.csv', target_index=2000,
one_hot=True)

kml = K_means_learner(data,3)

kml.learn(20); kml.show_classes()

km3=K_means_learner(data,3); km3.plot_error(10) # 3 classes

km3=K_means_learner(data,10); km3.plot_error(10) # 10 classes

H oH H

Exercise 10.1 If there are many classes, some of the classes can become empty
(e.g., try 100 classes with carbool.csv). Implement a way to put some examples
into a class, if possible. Two ideas are:

(a) Initialize the classes with actual examples, so that the classes will not start
empty. (Do the classes become empty?)

(b) In class_prediction, we test whether the code is empty, and make a prediction
of 0 for an empty class. It is possible to make a different prediction to “steal”
an example (but you should make sure that a class has a consistent value for
each feature in a loop).

Make your own suggestions, and compare it with the original, and whichever of
these you think may work better.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21

23
24
25
26
27
28
29
30
31

266 10. Learning with Uncertainty

10.3 EM

In the following definition, a class, ¢, is a integer in range [0, num_classes). i is
an index of a feature, so feat[i] is the ith feature, and a feature is a function from
tuples to values. val is a value of a feature.

A model consists of 2 lists, which form the sufficient statistics:

e class_counts is a list such that class_counts[c] is the number of tuples with
class = ¢, where each tuple is weighted by its probability, i.e.,

class_counts[c] = Y P(t)

t:class(t)=c

e feature_counts is a list such that feature_countsi][val][c] is the weighted count
of the number of tuples t with feat[i](t) = val and class(t) = ¢, each tuple
is weighted by its probability, i.e.,

feature_counts|i][val][c] = Y. P(t)
t:feat[i] (t)=val andeclass(t)=c

learnEM.py — EM Learning

from learnProblem import Data_set, Learner, Data_from_file
import random

import math

import matplotlib.pyplot as plt

class EM_learner(Learner):
def __init__(self,dataset, num_classes):
self.dataset = dataset
self.num_classes = num_classes
self.class_counts = None
self.feature_counts = None

The function em_step goes though the training examples, and updates these
counts. The first time it is run, when there is no model, it uses random distri-
butions.

learnEM.py — (continued)

def em_step(self, orig_class_counts, orig_feature_counts):
"""updates the model."""
class_counts = [@]*self.num_classes
feature_counts = [{val:[@]*self.num_classes
for val in feat.frange}
for feat in self.dataset.input_features]
for tple in self.dataset.train:
if orig_class_counts: # a model exists
tpl_class_dist = self.prob(tple, orig_class_counts,
orig_feature_counts)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

32

33
34
35
36
37
38

40
41

42
43
44
45
46
47
48
49

51
52
53
54

55

10.3. EM 267

else: # initially, with no model, return a random
distribution
tpl_class_dist = random_dist(self.num_classes)
for cl in range(self.num_classes):
class_counts[cl] += tpl_class_dist[cl]
for (ind,feat) in enumerate(self.dataset.input_features):
feature_counts[ind][feat(tple)][cl] += tpl_class_dist[cl]
return class_counts, feature_counts

prob computes the probability of a class c for a tuple tpl, given the current statis-
tics.

P(c | tple) < P(c *HP i=tple(i) | ¢)

class counts 1—[feature_counts|i] [feat;(tple)][c]
len(self datuset class_counts|c]|

~ [1; feature_counts|i][feati(tple)][]
class_counts|c]\feats|—1

The last step is because len(self .dataset) is a constant (independent of ¢). class_counts|c]

can be taken out of the product, but needs to be raised to the power of the num-
ber of features, and one of them cancels.

learnEM.py — (continued)

def prob(self, tple, class_counts, feature_counts):
"""returns a distribution over the classes for tuple tple in the
model defined by the counts
feats = self.dataset.input_features
unnorm = [prod(feature_counts[i][feat(tple)]1lc]
for (i,feat) in enumerate(feats))
/(class_counts[c]**(len(feats)-1))
for ¢ in range(self.num_classes)]
thesum = sum(unnorm)
return [un/thesum for un in unnorm]

learn does n steps of EM:

learnEM.py — (continued)

def learn(self,n):
"""do n steps of em
for i in range(n):
self.class_counts,self.feature_counts =
self.em_step(self.class_counts,

nnn

self.feature_counts)

The following is for visualizing the classes. It prints the dataset ordered by the
probability of class c.

learnEM.py — (continued)

def show_class(self,c):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

58
59
60
61

62

63
64
65
66

68
69

70
71
72
73
74
75
76
77
78

79
80
81
82

268 10. Learning with Uncertainty

nnn

sorts the data by the class and prints in order.
For visualizing small data sets

nnn

sorted_data =
sorted((self.prob(tpl,self.class_counts,self.feature_counts)[c],
ind, # preserve ordering for equal
probabilities
tpl)
for (ind,tpl) in enumerate(self.dataset.train))
for cc,r,tpl in sorted_data:
print(cc,*tpl,sep="\t")

The following are for evaluating the classes.
The probability of a tuple can be evaluated by marginalizing over the classes:

P(tple) = ZP *HP i=tple(i) | ¢)
- cel] By G

self .dataset) cc[c]

where cc is the class count and fc is feature count. len(self.dataset) can be dis-
tributed out of the sum, and cc|c| can be taken out of the product:

- len(self‘:ldatgset) ; CC[C]#}‘euts—l * ch[l] [feati(tple)] [C]

Given the probability of each tuple, we can evaluate the logloss, as the negative
of the log probability:

learnEM.py — (continued)

def logloss(self,tple):
"""returns the logloss of the prediction on tple, which is
-log(P(tple))
based on the current class counts and feature counts
feats = self.dataset.input_features
res = 0
cc = self.class_counts
fc = self.feature_counts
for c in range(self.num_classes):
res += prod(fc[i][feat(tple)llc]
for (i,feat) in
enumerate(feats))/(cc[cl*x(len(feats)-1))
if res>0:
return -math.log2(res/len(self.dataset.train))
else:
return float("inf") #infinity

Figure shows the training and test error for various numbers of classes for
the carbool dataset (calls commented out at the end of the code).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

84
85
86
87
88
89
90
91
92
93
94

95
96
97

98

99
100
101
102
103
104
105
106
107

10.3. EM 269

Ave Logloss (bits)

17 1

16 1

—— 40 classes. Training set

15 - 40 classes. Test set \f
—— 20 classes. Training set

—— 20 classes. Test set \\

—— 3 classes. Training set

—— 3 classes. Test set

1 classes. Training set
—— 1 classes. Test set

14

0 5 10 15 20 25 30
step

Figure 10.4: EM plotting error.

learnEM.py — (continued)

def plot_error(self, maxstep=20):

nnn

"""Plots the logloss error as a function of the number of steps
plt.ion()
plt.xlabel("step")
plt.ylabel("Ave Logloss (bits)")
train_errors = []
if self.dataset.test:
test_errors = []
for i in range(maxstep):
self.learn(1)
train_errors.append(sum(self.logloss(tple) for tple in
self.dataset.train)
/len(self.dataset.train))
if self.dataset.test:
test_errors.append(sum(self.logloss(tple) for tple in
self.dataset.test)
/len(self.dataset.test))
plt.plot(range(1,maxstep+1),train_errors,
label=str(self.num_classes)+"” classes. Training set")
if self.dataset.test:
plt.plot(range(1,maxstep+1),test_errors,
label=str(self.num_classes)+" classes. Test set"”)
plt.legend()
plt.draw()

def prod(L):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138

270 10. Learning with Uncertainty

nnn

returns the product of the elements of L"""
res = 1
for e in L:
res *= e
return res

def random_dist(k):
"""generate k random numbers that sum to 1"""
res = [random.random() for i in range(k)]
s = sum(res)
return [v/s for v in res]

data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)
eml = EM_learner(data,?2)

num_iter=2

print(”"Class assignment after”,num_iter,"iterations:")
eml.learn(num_iter); eml.show_class(@)

Plot the error

em2=EM_learner(data,2); em2.plot_error(40) # 2 classes

em3=EM_learner(data,3); em3.plot_error(40) # 3 classes

em13=EM_learner(data,13); eml13.plot_error(40) # 13 classes

data = Data_from_file('data/carbool.csv', target_index=2000,
one_hot=True)

[f.frange for f in data.input_features]

eml = EM_learner(data,3)

eml.learn(20); eml.show_class(0)

em3=EM_learner(data,3); em3.plot_error(30) # 3 classes

em3=EM_learner(data,20); em3.plot_error(30) # 20 classes

em3=EM_learner(data,40); em3.plot_error(30) # 40 classes

em3=EM_learner(data,1); em3.plot_error(30) # 1 classes (predict mean)

Exercise 10.2 For data where there are naturally 2 classes, does EM with 3 classes
do better on the training set after a while than 2 classes? Is is better on a test set.
Explain why. Hint: look what the 3 classes are. Use “eml.show_class(i)” for each
of the classes i € [0, 3).

Exercise 10.3 Write code to plot the logloss as a function of the number of classes
(from 1 to, say, 30) for a fixed number of iterations. (From the experience with the
existing code, think about how many iterations are appropriate.

Exercise 10.4 Repeat the previous exercise, but use cross validation to select the
number of iterations as a function of the number of classes and other features of
the dataset.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15

16
17
18
19
20
21

Chapter 11

Causality

11.1 Do Questions

A causal model can answer “do” questions.

The intervene function takes a belief network and a variable : value dictio-
nary specifying what to “do”, and returns a belief network resulting from in-
tervening to set each variable in the dictionary to its value specified. It replaces
the conditional probability distribution, CPD, (Section of each intervened
variable with an constant CPD.

probDo.py — Probabilistic inference with the do operator

from probGraphicalModels import InferenceMethod, BeliefNetwork
from probFactors import CPD, ConstantCPD

def intervene(bn, do={}):
assert isinstance(bn, BeliefNetwork), f"Do only applies to belief
networks ({bn.title})"

if do=={}:
return bn
else:

newfacs = ({f for (ch,f) in bn.var2cpt.items() if ch not in do} |
{ConstantCPD(v,c) for (v,c) in do.items()3})
return BeliefNetwork(f"{bn.title}(do={do})", bn.variables, newfacs)

The following adds the queryDo method to the InferenceMethod class, so it
can be used with any inference method. It replaces the graphical model with
the modified one, runs the inference algorithm, and restores the initial belief
network.

probDo.py — (continued)
def queryDo(self, qvar, obs={}, do={}):

271

24
25
26
27
28
29
30
31
32

34
35
36

37
38
39
40
41
42

272 11. Causality

Pearl's Sprinkler Example(do={Sprinkler: 'on'}) observed: {}

Season
dry_season: 0.500
wet_season: 0.500

Rained
False: 0.550
True: 0.450

Sprinkler
on: 1.000
off: 0.000

Grass wet
False: 0.059
True: 0.940

Shoes wet
False: 0.387
True: 0.613

Grass shiny
False: 0.339
True: 0.661

Figure 11.1: The sprinkler belief network with do={Sprinkler:"on"

"""Extends query method to also allow for interventions.

nnn

oldBN, self.gm = self.gm, intervene(self.gm, do)
result = self.query(qvar, obs)

self.gm = oldBN # restore original

return result

make queryDo available for all inference methods
InferenceMethod.queryDo = queryDo

The following example is based on the sprinkler belief network of Section[9.4.2]
shown in Figure The network with the intervention of putting the sprinkler
on is shown in Figure[I1.1]

probDo.py — (continued)
from probRC import ProbRC

from probExamples import bn_sprinkler, Season, Sprinkler, Rained,
Grass_wet, Grass_shiny, Shoes_wet

bn_sprinklerv = ProbRC(bn_sprinkler)

bn_sprinklerv.queryDo(Shoes_wet)

bn_sprinklerv.queryDo(Shoes_wet,obs={Sprinkler:"on"})

bn_sprinklerv.queryDo(Shoes_wet,do={Sprinkler:"on"})

bn_sprinklerv.queryDo(Season, obs={Sprinkler:"on"})

bn_sprinklerv.queryDo(Season, do={Sprinkler:"on"})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

43
44
45
46
47
48

50
51
52
53
54
55

56

57

58

59
60
61
62
63
64
65
66
67

11.1. Do Questions 273

Gateway Drug? observed: {}

Takes_Marijuana Takes_Hard_Drugs

False: 0.957
False: 0.824 True: 0.043

True: 0.176

Figure 11.2: Does taking marijuana lead to hard drugs: observable variables

Showing posterior distributions:

bn_sprinklerv.show_post({})

bn_sprinklerv.show_post({Sprinkler:"on"})

spon = intervene(bn_sprinkler, do={Sprinkler:"on"})
ProbRC(spon).show_post({})

The following is a representation of a possible model where marijuana is a gate-
way drug to harder drugs (or not). Before reading the code, try the commented-

out queries at the end. Figure shows the network with the observable
variables, Takes_Marijuana and Takes_Hard_Drugs.

probDo.py — (continued)

from variable import Variable

from probFactors import Prob

from probGraphicalModels import BeliefNetwork
boolean = [False, True]

Drug_Prone = Variable("Drug_Prone”, boolean, position=(0.1,0.5)) #
(0.5,0.9))

Side_Effects = Variable("Side_Effects"”, boolean, position=(0.1,0.5)) #
(0.5,0.1))

Takes_Marijuana = Variable("\nTakes_Marijuana\n”, boolean,
position=(0.1,0.5))

Takes_Hard_Drugs = Variable("Takes_Hard_Drugs"”, boolean,
position=(0.9,0.5))

p_dp = Prob(Drug_Prone, [1, [0.8, 0.2])
p_be = Prob(Side_Effects, [Takes_Marijuanal, [[1, 0], [0.4, 0.6]1)
p_tm = Prob(Takes_Marijuana, [Drug_Prone], [[0.98, 0.02], [0.2, 0.81])

p_thd = Prob(Takes_Hard_Drugs, [Side_Effects, Drug_Pronel],
Drug_Prone=False Drug_Prone=True
[[[0.999, ©.001], [0.6, 0.4]1]1, # Side_Effects=False
[[@.99999, 0.00001]1, [0.995, 0.005]1]) # Side_Effects=True

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

11
12
13
14
15
16
17

274 11. Causality

drugs = BeliefNetwork("Gateway Drug?”,
[Drug_Prone,Side_Effects, Takes_Marijuana,
Takes_Hard_Drugs],
[p_tm, p_dp, p_be, p_thdl)

drugsg = ProbRC(drugs)

drugsq.queryDo(Takes_Hard_Drugs)

drugsq.queryDo(Takes_Hard_Drugs, obs = {Takes_Marijuana: True})
drugsq.queryDo(Takes_Hard_Drugs, obs = {Takes_Marijuana: False})
#
#

drugsq.queryDo(Takes_Hard_Drugs, do = {Takes_Marijuana: True})
drugsq.queryDo(Takes_Hard_Drugs, do = {Takes_Marijuana: False})

ProbRC(drugs).show_post({})
ProbRC(drugs).show_post({Takes_Marijuana: True})
ProbRC(drugs).show_post({Takes_Marijuana: False})
ProbRC(intervene(drugs, do={Takes_Marijuana: True})).show_post({3})
ProbRC(intervene(drugs, do={Takes_Marijuana: False})).show_post({})
Why was that? Try the following then repeat:
Drug_Prone.position=(0.5,0.9); Side_Effects.position=(0.5,0.1)

HOoH H OH OH O

11.2 Counterfactual Reasoning

The following provides two examples of counterfactual reasoning. In the fol-
lowing code, the user has to provide the deterministic system with noise. As
we will see, there are multiple deterministic systems with noise that can pro-
duce the same causal probabilities.

probCounterfactual.py — Counterfactual Query Example
from variable import Variable

from probFactors import Prob, ProbDT, IFeq, SameAs, Dist
from probGraphicalModels import BeliefNetwork

from probRC import ProbRC

from probDo import queryDo

boolean = [False, True]

11.2.1 Choosing Deterministic System

This section presents an example to encourage you to think about what deter-
ministic system to use.

Consider the following example (thanks to Sophie Song). Suppose Bob
went on a date with Alice. Bob was either on time or not (variable B is true
when Bob is on time). Alice, who is fastidious about punctuality chooses
whether to go on a second date (variable A is true when Alice agrees to a
second date). Whether Bob is late depends on which cab company he called
(variable C). Suppose Bob calls one of the cab companies, he was late, and Al-
ice doesn’t ask for a second date. Bob wonders “what if I had called the other

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11.2. Counterfactual Reasoning 275

CBA Counterfactual Example

&

Figure 11.3: C — B — A belief network for “what if C". Figure generated by by
cbaCounter. show()

cab company”. Suppose all variables are Boolean. C causally depends on B,
and not directly on C, and B depends on C, so the appropriate causal model is
C—B— A

Assume the following probabilities obtained from observations (where the
lower case ¢ represents C = true, and similarly for other variables):

P(c) = 0.5
P(b|c)=P(b|—c)=0.7 (thecabcompanies are equally reliable)
(a|b) =04, (a|—b) =02

Consider “what if C was True” or “what if C was False”. For example,
suppose A=false and C=false is observed and you want the probability of A if
C were false.

Figure shows the paired network for “what if C”. The primed vari-
ables represent the situation where C is counterfactually True or False. In this
network, Cprime should be conditioned on. Conditioning on Cprime should not
affect the non-primed variables. (You should check this).

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39
40

276 11. Causality

probCounterfactual.py — (continued)

as a deterministic system with independent noise
Variable("C", boolean, position=(0.1,0.8))
Variable("B", boolean, position=(0.1,0.4))
Variable("A", boolean, position=(0.1,0.0))
Cprime = Variable("C'", boolean, position=(0.9,0.8))
Bprime = Variable("B'", boolean, position=(0.9,0.4))
Aprime = Variable("A'", boolean, position=(0.9,0.0))

> W O
1 n

B_b = Variable("B_b", boolean, position=(0.3,0.8))
B_0 = Variable("B_0", boolean, position=(0.5,0.8))
B_1 = Variable("B_1", boolean, position=(0.7,0.8))
A_b = Variable("A_b", boolean, position=(0.3,0.4))
A_0 = Variable("A_0", boolean, position=(0.5,0.4))
A_1 = Variable("A_1", boolean, position=(0.7,0.4))

The conditional probability P(A | B) is represented using three noise parame-
ters, Ay, Ap and A;, with the equivalence:

a=a,V (-bAag)V(bAay)

Thus a; is the background cause of 4, a9 is the cause used when B=false and a;
is the cause used when B=false. Note that this is over parametrized with re-
spect the belief network, using three parameters whereas arbitrary conditional
probability can be represented using two parameters.

The running example where (a | b) = 0.4 and (a | —b) = 0.2 can be repre-
sented using

P(ay) = 0,P(a9) = 0.2, P(a;) = 0.4
or
P(ay) = 0.2,P(ag) = 0,P(a;) = 0.25

(and infinitely many others between these). These cannot be distinguished by
observations or by interventions. As you can see if you play with the code,
these have different counterfactual conclusions.

P(B | C) is represented similarly, using variables By, By, and Bj.

The following code uses the decision tree representation of conditional prob-

abilities of Section

probCounterfactual.py — (continued)

p_C = Prob(C, [1, [0.5,0.5])

p_B = ProbDT(B, [C, B_b, B_0, B_1]1, IFeq(B_b,True,Dist([0,1]),
IFeq(C,True,SameAs(B_1),SameAs(B_0))))

p_A = ProbDT(A, [B, A_b, A_@, A_1], IFeq(A_b,True,Dist([0,11),

IFeq(B, True,SameAs(A_1),SameAs(A_0))))

p_Cprime = Prob(Cprime,[], [0.5,0.5])
p_Bprime = ProbDT(Bprime, [Cprime, B_b, B_0, B_1],
IFeq(B_b,True,Dist([0,1]),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62

64
65
66
67
68
69
70
71
72
73
74
75
76

11.2. Counterfactual Reasoning 277

IFeq(Cprime,True, SameAs(B_1),SameAs(B_0))))
p_Aprime = ProbDT(Aprime, [Bprime, A_b, A_0Q, A_1],
IFeq(A_b,True,Dist([0,1]),
IFeq(Bprime,True,SameAs(A_1),SameAs(A_0))))
p_b_b = Prob(B_b, [1, [1,0])
p_b_0 = Prob(B_0, [1, [0.3,0.7]1)
p_b_1 = Prob(B_1, [1, [0.3,0.71)

p_a_b = Prob(A_b, [1, [1,0])
p_a_® = Prob(A_0, [1, [0.8,0.2])
p_a_1 = Prob(A_1, [1, [0.6,0.4])

p_b_np = Prob(B, [1, [0.3,0.7]) # for AB network
p_Bprime_np = Prob(Bprime, [], [0.3,0.7]) # for AB network
ab_Counter = BeliefNetwork("AB Counterfactual Example”,
[A,B,Aprime,Bprime, A_b,A_0,A_1],
[p_A, p_b_np, p_Aprime, p_Bprime_np, p_a_b, p_a_o,
p_a_11)

cbaCounter = BeliefNetwork("CBA Counterfactual Example”,
[A,B,C, Aprime,Bprime,Cprime, B_b,B_0,B_1, A_b,A_0,A_11,
[p_A, p_B, p_C, p_Aprime, p_Bprime, p_Cprime,
p_b_b, p_b_0, p_b_1, p_a_b, p_a_0, p_a_1])

Here are some queries you might like to try. The show_post queries might be
most useful if you have the space to show multiple queries.

probCounterfactual.py — (continued)
cbaq = ProbRC(cbaCounter)

cbaq.queryDo(Aprime, obs = {C:True, Cprime:False})

cbaq.queryDo(Aprime, obs = {C:False, Cprime:True})

cbaq.queryDo(Aprime, obs = {A:True, C:True, Cprime:False})
cbaqg.queryDo(Aprime, obs = {A:False, C:True, Cprime:False})
cbaqg.queryDo(Aprime, obs = {A:False, C:True, Cprime:False})
cbaq.queryDo(A_1, obs = {C:True,Aprime:False})

cbaq.queryDo(A_0, obs = {C:True,Aprime:False})

cbaqg.show_post(obs = {})

cbaqg.show_post(obs = {C:True, Cprime:False})

cbaq.show_post(obs = {A:False, C:True, Cprime:False})
cbaq.show_post(obs = {A:True, C:True, Cprime:False})

Exercise 11.1 Consider the scenario “Bob called the first cab (C = frue), was
late and Alice agrees to a second date”. What would you expect from the scenario
“what if Bob called the other cab?”. What does the network predict? Design prob-
abilities for the noise variables that fits the conditional probability and also fits
your expectation.

Exercise 11.2 How would you expect the counterfactual conclusion to change
given the following two scenarios that fit the story:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

278 11. Causality

Firing squad observed: {}

S20
False: 0.010
True: 0.990

Order
False: 0.900
True: 0.100

Slo
False: 0.010
True: 0.990

S2n
False: 0.990
True: 0.010

Sln
False: 0.990
True: 0.010

S1 S2
False: 0.892(False: 0.892
True: 0.108 | True: 0.108

Dead
False: 0.882
True: 0.118

Figure 11.4: Firing squad belief network (figure obtained from fsq.show_post ({})

* The cabs are both very reliable and start at the same location (and so face the
same traffic).

* The cabs are each 90% reliable and start from opposite directions.

(a) How would you expect the predictions to differ in these two cases?

(b) How can you fit the conditional probabilities above and represent each of
these by changing the probabilities of the noise variables?

(c) How can these be learned from data? (Hint: consider learning a correlation
between the taxi arrivals). Is your approach always applicable? If not, for
which cases is it applicable or not.

Exercise 11.3 Choose two assignments to values to each of a;, a9 and a; usinga =
ap V (=b Aag) V (b Aap) such that the two assignments (a) cannot be distinguished
by observations or by interventions, and (b) have a counterfactual prediction that
differs by 1 — € for a small value of €, such as € = 0.1.

11.2.2 Firing Squad Example

The following is the firing squad example of Pearl| [2009] as a deterministic
system. See Figure[11.4]

probCounterfactual.py — (continued)

78 ‘Order = Variable("Order"”, boolean, position=(0.4,0.8))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

79
80
81
82
83
84
85

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108

11.2. Counterfactual Reasoning 279

S1 = Variable("S1", boolean, position=(0.3,0.4))

S1o = Variable("”S10", boolean, position=(0.1,0.8))
STn = Variable(”S1n", boolean, position=(0.0,0.6))
S2 = Variable("S2", boolean, position=(0.5,0.4))

S20 = Variable("S20", boolean, position=(0.7,0.8))
S2n = Variable("S2n", boolean, position=(0.8,0.6))
Dead = Variable("Dead”, boolean, position=(0.4,0.0))

Instead of the tabular representation of the if-then-else structure used for the
A — B — Cnetwork above, the following uses the decision tree representation
of conditional probabilities of Section[9.3.4]

probCounterfactual.py — (continued)

p_S1 = ProbDT(S1, [Order, Slo, S1n],
IFeq(Order,True, SameAs(S10), SameAs(S1n)))
p_S2 = ProbDT(S2, [Order, S2o0, S2n],

IFeq(Order,True, SameAs(S20), SameAs(S2n)))

p_dead = Prob(Dead, [S1,S2], [[[1,e],[@,1]1],[[@,1],[0,111])
#IFeq(S1,True, True,SameAs(S2)))

p_order = Prob(Order, [1, [0.9, 0.1])

p_slo = Prob(S1o, [1, [0.01, 0.99])

p_sin = Prob(S1n, [1, [0.99, 0.01])

p_s20 = Prob(S2o0, []1, [0.01, ©.99])

p_s2n = Prob(S2n, [1, [0.99, 0.01])

firing_squad = BeliefNetwork("Firing squad”,
[Order, S1, Slo, S1n, S2, S20, S2n, Dead],
[p_order, p_dead, p_S1, p_slo, p_sin, p_S2, p_s2o,

p_s2n])

fsq = ProbRC(firing_squad)

fsq.queryDo(Dead)

fsq.queryDo(Order, obs={Dead:True})

fsq.queryDo(Dead, obs={Order:True})

fsq.show_post({})

fsq.show_post({Dead:True})

fsq.show_post({S2:True})

Exercise 11.4 Create the network for “what if shooter 2 did or did not shoot”.
Give the probabilities of the following counterfactuals:

(a) The prisoner is dead; what is the probability that the prisoner would be dead
if shooter 2 did not shoot?

(b) Shooter 2 shot; what is the probability that the prisoner would be dead if
shooter 2 did not shoot?

(c) No order was given, but the prisoner is dead; what is the probability that
the prisoner would be dead if shooter 2 did not shoot?

Exercise 11.5 Create the network for “what if the order was or was not given”.
Give the probabilities of the following counterfactuals:

(@) The prisoner is dead; what is the probability that the prisoner would be dead
if the order was not given?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

280 11. Causality

(b) The prisoner is not dead; what is the probability that the prisoner would be
dead if the order was not given? (Is this different from the prior that the
prisoner is dead, or the posterior that the prisoner was dead given the order
was not given).

(c) Shooter 2 shot; what is the probability that the prisoner would be dead if the
order was not given?

(d) Shooter 2 did not shoot; what is the probability that the prisoner would be
dead if the order was given? (Is this different from the probability that the
the prisoner would be dead if the order was given without the counterfac-
tual observation)?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Chapter 12

Planning with Uncertainty

12.1 Decision Networks

The decision network code builds on the representation for belief networks of
Chapter [9}

First, define factors that define the utility. Here the utility is a function
of the variables in vars. In a utility table the utility is defined in terms of a
tabular factor — a list that enumerates the values — as in Section9.3.3] Another
representations for factors (Section[9.2) could able be used.

decnNetworks.py — Representations for Decision Networks

from probGraphicalModels import GraphicalModel, BeliefNetwork

from probFactors import Factor, CPD, TabFactor, factor_times, Prob
from variable import Variable

import matplotlib.pyplot as plt

class Utility(Factor):
"""A factor defining a utility
pass

nnn

class UtilityTable(TabFactor, Utility):
"""A factor defining a utility using a table
def __init__(self, vars, table, position=None):

"""Creates a factor on vars from the table.
The table is ordered according to vars.

nnn

nnn

TabFactor.__init__(self,vars,table, name="Utility")
self.position = position

A decision variable is like a random variable with a string name, and a do-
main, which is a list of possible values. The decision variable also includes the

281

29
30
31
32
33

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

58
59
60
61
62
63
64
65
66

282 12. Planning with Uncertainty

parents, a list of the variables whose value will be known when the decision is
made. It also includes a position, which is used for plotting.

decnNetworks.py — (continued)

class DecisionVariable(Variable):
def __init__(self, name, domain, parents, position=None):
Variable.__init__(self, name, domain, position)
self.parents = parents
self.all_vars = set(parents) | {self}

A decision network is a graphical model where the variables can be random
variables or decision variables. Among the factors we assume there is one
utility factor. Note that this is an instance of BeliefNetwork but overrides
__init__.

decnNetworks.py — (continued)

class DecisionNetwork(BeliefNetwork):
def __init__(self, title, vars, factors):

"""title is a string
vars is a list of variables (random and decision)
factors is a list of factors (instances of CPD and Utility)
GraphicalModel.__init__(self, title, vars, factors)

not BeliefNetwork.__init__
self.var2parents = ({v : v.parents for v in vars

if isinstance(v,DecisionVariable)}
| {f.child:f.parents for f in factors
if isinstance(f,CPD)})
self.children = {n:[] for n in self.variables}
for v in self.var2parents:
for par in self.var2parents[v]:

self.children[par].append(v)

self.utility_factor = [f for f in factors
if isinstance(f,Utility)][0]

self.topological_sort_saved = None

def __str__(self):
return self.title

The split order ensures that the parents of a decision node are split before
the decision node, and no other variables (if that is possible).

decnNetworks.py — (continued)

def split_order(self):
so = []
tops = self.topological_sort()
for v in tops:
if isinstance(v,DecisionVariable):
so += [p for p in v.parents if p not in so]
s0.append(v)
so += [v for v in tops if v not in so]
return so

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12.1. Decision Networks 283

decnNetworks.py — (continued)

68 def show(self, fontsize=10,

69 colors={'utility':'red', 'decision':'lime', 'random':'orange'}):

70 plt.ion() # interactive

71 ax = plt.figure().gca()

72 ax.set_axis_off()

73 plt.title(self.title, fontsize=fontsize)

74 for par in self.utility_factor.variables:

75 ax.annotate("Utility", par.position,

76 xytext=self.utility_factor.position,

77 arrowprops={ 'arrowstyle':'<-"},

78 bbox=dict(boxstyle="sawtooth,pad=1.0",

79 facecolor=colors['utility']),

80 ha='center', va='center', fontsize=fontsize)

81 for var in reversed(self.topological_sort()):

82 if isinstance(var,DecisionVariable):

83 bbox = dict(boxstyle="square,pad=1.0",

84 facecolor=colors['decision'])

85 else:

86 bbox = dict(boxstyle="round4,pad=1.0,rounding_size=0.5",

87 facecolor=colors['random'])

88 if self.var2parents[var]:

89 for par in self.var2parents[var]:

90 ax.annotate(var.name, par.position, xytext=var.position,

91 arrowprops={'arrowstyle': '<-"'}, bbox=bbox,

92 ha='center', va='center',

93 fontsize=fontsize)

94 else:

95 X,y = var.position

9% plt.text(x,y,var.name,bbox=bbox,ha='center', va='center',
fontsize=fontsize)

12.1.1 Example Decision Networks
Umbrella Decision Network

Here is a simple “umbrella” decision network. The output of umbrella_dn. show()
is shown in Figure[12.1}

decnNetworks.py — (continued)

98 |Weather = Variable("Weather”, ["NoRain”, "Rain"],

99 position=(0.5,0.8))

100 |Forecast = Variable("Forecast”, ["Sunny”, "Cloudy"”, "Rainy"],

101 position=(0,0.4))

102 |# Each variant uses one of the following:

103 |Umbrella = DecisionVariable("Umbrella”, ["Take"”, "Leave"], {Forecast},
104 position=(0.5,0))

105

106 | p_weather = Prob(Weather, [], {"NoRain":0.7, "Rain":0.33})

107 | p_forecast = Prob(Forecast, [Weather],

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

108
109
110
111
112
113
114
115
116
117
118
119

121
122
123
124
125
126

284 12. Planning with Uncertainty

Umbrella Decision Network

Umbrella

Figure 12.1: The umbrella decision network. Figure generated by
umbrella_dn.show()

{"NoRain":{"Sunny":0.7, "Cloudy":0.2, "Rainy":0.1},
"Rain”:{"Sunny":0.15, "Cloudy":0.25, "Rainy":0.63}})
umb_utility = UtilityTable([Weather, Umbrellal,
{"NoRain":{"Take":20, "Leave":100},
"Rain":{"Take":70, "Leave":0}}, position=(1,0.4))

umbrella_dn = DecisionNetwork("Umbrella Decision Network",
{Weather, Forecast, Umbrella},
{p_weather, p_forecast, umb_utility})

umbrella_dn.show()
umbrella_dn.show(fontsize=15)

The following is a variant with the umbrella decision having 2 parents; nothing
else has changed. This is interesting because one of the parents is not needed;
if the agent knows the weather, it can ignore the forecast.

decnNetworks.py — (continued)

Umbrella2p = DecisionVariable("Umbrella”, ["Take", "Leave"],
{Forecast, Weather}, position=(0.5,0))

umb_utility2p = UtilityTable([Weather, Umbrella2p],
{"NoRain":{"Take":20, "Leave":100},
"Rain":{"Take":70, "Leave":0}},
position=(1,0.4))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

127
128
129
130
131
132

134
135
136
137
138
139
140
141
142
143

12.1. Decision Networks 285

Fire Decision Network

(5
(Alarm) (Smoke) *

(Leaving) Chk_Sm —>(Sees/)

Call

Figure 12.2: Fire Decision Network. Figure generated by fire_dn.show()

umbrella_dn2p = DecisionNetwork("Umbrella Decision Network (extra arc)”,
{Weather, Forecast, Umbrella2p},
{p_weather, p_forecast, umb_utility2p})

umbrella_dn2p.show()
umbrella_dn2p.show(fontsize=15)

Fire Decision Network

The fire decision network of Figure (showing the result of fire_dn. show())
is represented as:

decnNetworks.py — (continued)

boolean = [False, True]

Alarm = Variable("Alarm”, boolean, position=(0.25,0.633))
Fire = Variable("Fire", boolean, position=(0.5,0.9))

Leaving = Variable("”Leaving"”, boolean, position=(0.25,0.366))
Report = Variable("Report”, boolean, position=(0.25,0.1))
Smoke = Variable("”Smoke", boolean, position=(0.75,0.633))
Tamper = Variable("Tamper", boolean, position=(0,0.9))

See_Sm = Variable("See_Sm", boolean, position=(0.75,0.366))
Chk_Sm = DecisionVariable("Chk_Sm"”, boolean, {Report},

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176
177
178
179
180
181
182

286 12. Planning with Uncertainty

position=(0.5, 0.366))
Call = DecisionVariable("Call"”, boolean,{See_Sm,Chk_Sm,Report},
position=(0.75,0.1))

f_ta = Prob(Tamper,[],[0.98,0.02])

f_fi = Prob(Fire,[1,[0.99,0.011)

f_sm = Prob(Smoke, [Fire],[[0.99,0.01],[0.1,0.9]1)

f_al = Prob(Alarm,[Fire,Tamper],[[[0.9999, 0.0001], [0.15, ©0.85]11,
[[0.01, ©.99], [0.5, 0.5]111)

f_lv = Prob(Leaving,[Alarm],[[0.999, 0.001], [0.12, 0.88]1])

f_re = Prob(Report,[Leaving],[[0.99, 0.01], [0.25, 0.75]1)

f_ss = Prob(See_Sm, [Chk_Sm,Smoke],[[[1,0]1,[1,0]1,[[1,0],[0,1111)

ut = UtilityTable([Chk_Sm,Fire,Call],
[[[0,-200],[-5000,-200]1],[[-20,-2201,[-5020,-220]11,
position=(1,0.633))

fire_dn = DecisionNetwork("Fire Decision Network"”,
{Tamper,Fire,Alarm,Leaving, Smoke,Call,See_Sm,Chk_Sm,Report},
{f_ta,f_fi,f_sm,f_al, f_1lv,f_re,f_ss,ut})

print(ut.to_table())
fire_dn.show()
fire_dn.show(fontsize=15)

Cheating Decision Network

The following is the representation of the cheating decision shown in Figure
Someone has to decide whether to cheat at two different times. Cheat-
ing can improve grades. However, someone is watching for cheating, and if
caught, results in punishment. The utility is a combination of final grade and
the punishment. The decision maker finds out whether they were caught the
first time when they have to decide whether to cheat the second time.

decnNetworks.py — (continued)

grades = ['A','B','C"','F']

Watched = Variable("Watched"”, boolean, position=(0,0.9))
Caught1 = Variable("Caught1”, boolean, position=(0.2,0.7))
Caught2 = Variable("Caught2"”, boolean, position=(0.6,0.7))

Punish = Variable("Punish”, ["None","Suspension"”, "Recorded"],
position=(0.8,0.9))

Grade_1 = Variable("Grade_1", grades, position=(0.2,0.3))

Grade_2 = Variable("Grade_2", grades, position=(0.6,0.3))

Fin_Grd = Variable("Fin_Grd", grades, position=(0.8,0.1))

Cheat_1 = DecisionVariable("Cheat_1", boolean, set(), position=(0,0.5))
Cheat_2 = DecisionVariable("Cheat_2", boolean, {Cheat_1,Caught1},

position=(0.4,0.5))
p_wa = Prob(Watched,[],[0.7, 0.3])

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

12.1. Decision Networks

287

Cheating Decision Network

Watched

Caught2

Cheat 1 ——»| Cheat 2

Figure 12.3: Cheating Decision Network (cheating_dn.show())

p_ccl = Prob(Caught1,[Watched,Cheat_1]1,[[[1.0, 0.0], [0.9, 0.1]11,
[[1.0, @.0]1, [0.5, 0.5]111)
p_cc2 = Prob(Caught2,[Watched,Cheat_2],[[[1.0, .01, [0.9, 0.111,
[[1.0, .01, [0.5, 0.5111)

p_pun = Prob(Punish,[Caught1,Caught2],

[[{"None":@,"Suspension”:@,"Recorded”: 0},
{"None":0.5,"Suspension”:0.4,"Recorded”:0.13}1,
[{"None":0.6,"Suspension”:0.2,"Recorded":0.2},
{"None":0.2,"Suspension”:0.3, " "Recorded”:0.33}]1)

p_gr1 = Prob(Grade_1,[Cheat_1], [{'A':0.2, 'B':0.3, 'C':0.3, 'F': 0.2},
{'A':0.5, 'B':0.3, 'C':0.2, 'F':0.0}])
p_gr2 = Prob(Grade_2,[Cheat_2], [{'A':0.2, 'B':0.3, 'C':0.3, 'F': 0.2},

{'A':0.5, 'B':0.3, 'C':0.2, 'F':0.03}])
p_fg = Prob(Fin_Grd, [Grade_1,Grade_2],
{'A":{'A":{'A":1.0, 'B':0.0, 'C': 0.0, 'F':0.03},
'‘B': {'A':0.5, 'B':0.5, 'C': 0.0, 'F':0.0},

'C':{'A":0.25, 'B':0.5, 'C': 0.25, 'F':0.03},

'F':{'A":0.25, 'B':0.25, 'C': @0.25, 'F':0.25}},
'‘B'":{'A":{'A":0.5, 'B':0.5, 'C': 0.0, 'F':0.0},

'‘B': {'A':0.0, 'B':1, 'C': 0.0, 'F':0.0},

'C':{'A':0.0, 'B':0.5, 'C': 0.5, 'F':0.03},

'F':{'A':0.0, 'B':0.25, 'C': 0.5, 'F':0.25}},
"C':{'A":{'A":0.25, 'B':0.5, 'C': 0.25, 'F':0.0},

'‘B': {'A':0.0, 'B':0.5, 'C': 0.5, 'F':0.03},

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

288 12. Planning with Uncertainty

207 'C':{'A':0.0, 'B':0.0, 'C': 1, 'F':0.0},

208 'F':{'A':0.0, 'B':0.0, 'C': 0.5, 'F':0.5}},

209 "F':{'A":{'A'":0.25, 'B':0.25, 'C': 0.25, 'F':0.25},

210 'B': {'A':0.0, 'B':0.25, 'C': 0.5, 'F':0.25},

211 'C':{'A':0.0, 'B':0.0, 'C': 0.5, 'F':0.53},

212 'F':{'A':0.0, 'B':0.0, 'C': @, 'F':1.0}3}3})

213

214 |utc = UtilityTable([Punish,Fin_Grd],

215 {'None':{'A':100, 'B':90, 'C': 70, 'F':50},

216 'Suspension':{'A':40, 'B':20, 'C': 10, 'F':0},
217 'Recorded':{'A':70, 'B':60, 'C': 40, 'F':20}},
218 position=(1,0.5))

219

220 | cheating_dn = DecisionNetwork(”Cheating Decision Network",

221 {Punish,Caught2,Watched,Fin_Grd,Grade_2,Grade_1,Cheat_2,Caught1,Cheat_1},
222 {p_wa, p_ccl, p_cc2, p_pun, p_grl, p_gr2,p_fg,utc})
223

224 |# cheating_dn.show()
225 |# cheating_dn.show(fontsize=15)

Chain of 3 decisions

The following decision network represents a finite-stage fully-observable Markov
decision process with a single reward (utility) at the end. It is interesting be-
cause the parents do not include all the predecessors. The methods we use will
work without change on this, even though the agent does not condition on all
of its previous observations and actions. The output of ch3.show() is shown in

Figure

decnNetworks.py — (continued)

227 |S@ = Variable('S@', boolean, position=(0,0.5))

228 | DO = DecisionVariable('D@', boolean, {S@}, position=(1/7,0.1))
229 |S1 = Variable('S1', boolean, position=(2/7,0.5))

230 |D1 = DecisionVariable('D1', boolean, {S1}, position=(3/7,0.1))
231 |S2 = Variable('S2', boolean, position=(4/7,0.5))

232 |D2 = DecisionVariable('D2', boolean, {S2}, position=(5/7,0.1))
233 |S3 = Variable('S3', boolean, position=(6/7,0.5))

234
235 |p_s@ = Prob(Se, []1, [0.5,0.5])

26 |tr = [[[0.1, 0.9], [0.9, ©.1]1, [[0.2, ©.8], [0.8, 0.211]1 # @ is flip, 1
is keep value

237 |p_s1 = Prob(S1, [D@,S0], tr)

238 |p_s2 = Prob(S2, [D1,S1]1, tr)

239 |p_s3 = Prob(S3, [D2,S2], tr)

240

241 |ch3U = UtilityTable([S3],[0,1], position=(7/7,0.9))
242

243 | ch3 = DecisionNetwork("”3-chain”,
{So0,D0,S1,D1,S2,D2,S3},{p_s0,p_s1,p_s2,p_s3,ch3U})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12.1. Decision Networks 289

3-chain

AVAVAV

DO D1 D2

Figure 12.4: A decision network that is a chain of 3 decisions (ch3.show())

244
245 |# ch3.show()
246 |# ch3.show(fontsize=15)

12.1.2 Decision Functions

The output of an optimization function is an optimal policy and its expected
value. A policy is a list of decision functions. A decision function is the action
for each decision variable as a function of its parents.

Let’s represent the factor for a decision function as a dictionary.

decnNetworks.py — (continued)

248 | class DictFactor(Factor):

249 """A factor that represents its values using a dictionary"""
250 def __init__(self, xpargs, *xkwargs):

251 self.values = {}

252 Factor.__init__(self, *pargs, **kwargs)

253

254 def assign(self, assignment, value):

255 self.values[frozenset(assignment.items())] = value
256

257 def get_value(self, assignment):

258 ass = frozenset(assignment.items())

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

259

260
261
262
263
264
265
266
267
268
269
270

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

291
292
293
294
295
296
297
298
299

290 12. Planning with Uncertainty

assert ass in self.values, f"assignment {assignment} cannot be
evaluated”
return self.values[ass]

class DecisionFunction(DictFactor):
def __init__(self, decision, parents):
"moA decision function
decision is a decision variable
parents is a set of variables

nnn

self.decision = decision
self.parent = parents
DictFactor.__init__(self, parents, name=decision.name)

12.1.3 Recursive Conditioning for Decision Networks

An instance of a RC_DN object takes in a decision network. The query method
uses recursive conditioning to compute the expected utility of the optimal pol-
icy. When it is finished, self.opt_policy is the optimal policy.

decnNetworks.py — (continued)

import math

from display import Displayable

from probGraphicalModels import GraphicalModel
from probFactors import Factor

from probRC import connected_components

class RC_DN(Displayable):
"""The class that finds the optimal policy for a decision network.

dn is graphical model to query

nnn

def __init__(self, dn):
self.dn = dn
self.cache = {(frozenset(), frozenset()):1}
self.max_display_level = 3

def optimize(self, split_order=None, algorithm=None):
"""computes expected utility, and creates optimal decision
functions, where
elim_order is a list of the non-observed non-query variables in dn
algorithm is the (search algorithm to use). Default is self.rc
if algorithm is None:
algorithm = self.rc
if split_order == None:
split_order = self.dn.split_order()
self.opt_policy = {v:DecisionFunction(v, v.parents)
for v in self.dn.variables

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

300
301
302
303
304

306
307
308
309
310

311
312

313
314
315

316
317
318
319
320
321
322
323

324
325
326
327

328
329
330
331
332
333
334
335
336

337

12.1. Decision Networks 291

if isinstance(v,DecisionVariable)}
return algorithm({}, self.dn.factors, split_order)

def show_policy(self):
print('\n'.join(df.to_table() for df in self.opt_policy.values()))

The following is the simplest search-based algorithm. It is exponential in
the number of variables, so is not very useful. However, it is simple, and help-
ful to understand before looking at the more complicated algorithm. Note
that the above code does not call rco; you will need to change the self.rc
to self.rco in above code to use it.

decnNetworks.py — (continued)

def rco(self, context, factors, split_order):
"""simplest search algorithm
context is a variable:value dictionary
factors is a set of factors
split_order is a list of variables in factors that are not in
context
self.display(3,"calling rco,", (context,factors),"with
S0",split_order)
if not factors:
return 1
elif to_eval := {fac for fac in factors if
fac.can_evaluate(context)}:
self.display(3,"rc@ evaluating factors”, to_eval)
val = math.prod(fac.get_value(context) for fac in to_eval)
return val * self.rc@(context, factors-to_eval, split_order)
else:
var = split_order[0]
self.display(3, "rc@ branching on", var)
if isinstance(var,DecisionVariable):
assert set(context) <= set(var.parents), f”cannot optimize
{var} in context {context}"
maxres = -math.inf
for val in var.domain:
self.display(3,”In rc@, branching on",6var,"=",6val)
newres = self.rc@({var:val}|context, factors,
split_order[1:1)
if newres > maxres:
maxres = newres
theval = val
self.opt_policy[var].assign(context,theval)
return maxres
else:
total = @
for val in var.domain:
total += self.rc@({var:val}|context, factors,
split_order[1:1)
self.display(3, "rc@ branching on"”, var,"returning”, total)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

338

340
341

342
343
344

345
346
347

348
349
350
351

352
353
354

355
356
357
358
359
360

361
362
363
364
365
366
367

368

369
370
371
372
373
374
375

292 12. Planning with Uncertainty

return total

We can combine the optimization for decision networks above, with the
improvements of recursive conditioning used for graphical models (Section

page[220).

decnNetworks.py — (continued)

def rc(self, context, factors, split_order):

""" returns the number sum_{split_order} prod_{factors} given
assignments in context

context is a variable:value dictionary

factors is a set of factors

split_order is a list of variables in factors that are not in
context

self.display(3,"calling rc,"”, (context,factors))

ce = (frozenset(context.items()), frozenset(factors)) # key for the
cache entry

if ce in self.cache:
self.display(2,"rc cache lookup"”, (context,factors))
return self.cache[ce]

if not factors: # no factors; needed if you don't have forgetting
and caching
return 1
elif vars_not_in_factors := {var for var in context

if not any(var in fac.variables for
fac in factors)}:
forget variables not in any factor
self.display(3,"rc forgetting variables”, vars_not_in_factors)
return self.rc({key:val for (key,val) in context.items()
if key not in vars_not_in_factors},
factors, split_order)
elif to_eval := {fac for fac in factors if
fac.can_evaluate(context)}:
evaluate factors when all variables are assigned
self.display(3,"rc evaluating factors”,to_eval)
val = math.prod(fac.get_value(context) for fac in to_eval)
if val == o:
return 0
else:
return val * self.rc(context, {fac for fac in factors if fac
not in to_eval}, split_order)
elif len(comp := connected_components(context, factors,
split_order)) > 1:
there are disconnected components
self.display(2,"splitting into connected components",comp)
return(math.prod(self.rc(context,f,eo) for (f,eo) in comp))
else:
assert split_order, f"split_order empty rc({context},{factors})”
var = split_order[0]
self.display(3, "rc branching on”, var)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

376
377

378
379
380
381

382
383
384
385
386
387
388
389
390
391

392
393
394

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

12.1. Decision Networks 293

if isinstance(var,DecisionVariable):
assert set(context) <= set(var.parents), f”cannot optimize
{var} in context {context}"
maxres = -math.inf
for val in var.domain:
self.display(3,"In rc, branching on",6var,"=" 6val)
newres = self.rc({var:val}|context, factors,
split_order[1:1)
if newres > maxres:
maxres = newres
theval = val
self.opt_policy[var].assign(context, theval)
self.cache[ce] = maxres
return maxres
else:
total = @
for val in var.domain:
total += self.rc({var:val}|context, factors,
split_order[1:])
self.display(3, "rc branching on", var,"returning”, total)
self.cache[ce] = total
return total

Here is how to run the optimizer on the example decision networks:

decnNetworks.py — (continued)

Umbrella decision network

#urc = RC_DN(umbrella_dn)
#urc.optimize(algorithm=urc.rc@) #RCO
#urc.optimize() #RC
#urc.show_policy()

#rc_fire = RC_DN(fire_dn)
#rc_fire.optimize()
#rc_fire.show_policy()

#rc_cheat = RC_DN(cheating_dn)
#rc_cheat.optimize()
#rc_cheat.show_policy()

#rc_ch3 = RC_DN(ch3)

#rc_ch3.optimize()

#rc_ch3.show_policy()

rc_ch3.optimize(algorithm=rc_ch3.rc@) # why does that happen?

12.1.4 Variable elimination for decision networks

VE_DN is variable elimination for decision networks. The method optimize is
used to optimize all the decisions. Note that optimize requires a legal elimina-
tion ordering of the random and decision variables, otherwise it will give an

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434

435
436
437

438
439
440
441
442

443
444
445
446

448
449
450
451
452
453
454
455

294 12. Planning with Uncertainty

exception. (A decision node can only be maximized if the variables that are not
its parents have already been eliminated.)

decnNetworks.py — (continued)

from probVE import VE

class VE_DN(VE):
"""Variable Elimination for Decision Networks
def __init__(self,dn=None):
"""dn is a decision network"""
VE.__init__(self,dn)

self.dn = dn

nnn

def optimize(self,elim_order=None,obs={}):
if elim_order == None:
elim_order = reversed(self.dn.split_order())
self.opt_policy = {3}
proj_factors = [self.project_observations(fact,obs)
for fact in self.dn.factors]
for v in elim_order:
if isinstance(v,DecisionVariable):
to_max = [fac for fac in proj_factors
if v in fac.variables and set(fac.variables) <=
v.all_vars]
assert len(to_max)==1, "illegal variable order
"+str(elim_order)+" at "+str(v)
newFac = FactorMax(v, to_max[@])
self.opt_policy[v]=newFac.decision_fun
proj_factors = [fac for fac in proj_factors if fac is not
to_max[@]]+[newFac]
self.display(2, "maximizing",v)
self.display(3,newFac)
else:
proj_factors = self.eliminate_var(proj_factors, v)
assert len(proj_factors)==1,"Should there be only one element of
proj_factors?”
return proj_factors[0].get_value({})

def show_policy(self):
print('\n'.join(df.to_table() for df in self.opt_policy.values()))

decnNetworks.py — (continued)
class FactorMax(TabFactor):
"""A factor obtained by maximizing a variable in a factor.
Also builds a decision_function. This is based on FactorSum.

nnn

def __init__(self, dvar, factor):
"""dvar is a decision variable.
factor is a factor that contains dvar and only parents of dvar

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

456
457
458
459
460
461
462
463
464
465

466

467
468
469
470
471
472
473
474
475
476
477
478
479

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

12.1. Decision Networks 295

nnn

self.dvar = dvar

self.factor = factor

vars = [v for v in factor.variables if v is not dvar]
Factor.__init__(self,vars)

self.values = {}

self.decision_fun = DecisionFunction(dvar, dvar.parents)

def get_value(self,assignment):
"""lazy implementation: if saved, return saved value, else compute
it"""
new_asst = {x:v for (x,v) in assignment.items() if x in
self.variables}
asst = frozenset(new_asst.items())
if asst in self.values:
return self.values[asst]
else:
max_val = float("-inf") # -infinity
for elt in self.dvar.domain:
fac_val = self.factor.get_value(assignment|{self.dvar:elt})
if fac_val>max_val:
max_val = fac_val
best_elt = elt
self.values[asst] = max_val
self.decision_fun.assign(assignment, best_elt)
return max_val

Here are some example queries:

decnNetworks.py — (continued)

H o H H

H o H H

Example queries:

vf = VE_DN(fire_dn)
vf.optimize()
vf.show_policy()

VE_DN.max_display_level = 3 # if you want to show lots of detail
c = VE_DN(cheating_dn)

vc.optimize()

vc.show_policy()

def test(dn):

rc@dn = RC_DN(dn)

rcov = rc@dn.optimize(algorithm=rcodn.rco)

rcdn = RC_DN(dn)

rcv = rcdn.optimize()

assert abs(rcoOv-rcv)<le-10, f"rc@ produces {rcov}; rc produces {rcv}
vedn = VE_DN(dn)

vev = vedn.optimize()

assert abs(vev-rcv)<le-10, f"VE_DN produces {vev}; RC produces {rcv}
print(f"”passed unit test. rc@, rc and VE gave same result for {dn}")

n

n

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

296 12. Planning with Uncertainty

502 |if __name__ == "__main__
503 test(fire_dn)

n,

12.2 Markov Decision Processes

The following represent a Markov decision process (MDP) directly, rather
than using the recursive conditioning or variable elimination code.

mdpProblem.py — Representations for Markov Decision Processes

11 |import random

12 | from display import Displayable

13 |from utilities import argmaxd

14

15 | class MDP(Displayable):

16 """A Markov Decision Process. Must define:

17 title a string that gives the title of the MDP

18 states the set (or list) of states

19 actions the set (or list) of actions

20 discount a real-valued discount

21 e

22

23 def __init__(self, title, states, actions, discount, init=0):

24 self.title = title

25 self.states = states

26 self.actions = actions

27 self.discount = discount

28 self.initv = self.V = {s:init for s in self.states}

29 self.initq = self.Q = {s: {a: init for a in self.actions} for s in
self.states}

30

31 def P(self,s,a):

32 """Transition probability function

33 returns a dictionary of {s1:p1} such that P(s1 | s,a)=pl,

34 and other probabilities are zero.

35 e

36 raise NotImplementedError("P") # abstract method

37

38 def R(self,s,a):

39 """Reward function R(s,a)

40 returns the expected reward for doing a in state s.

41 o

2 raise NotImplementedError("R") # abstract method

Two state partying example (Example 12.29 in Poole and Mackworth|[2023]):

mdpExamples.py — MDP Examples

11 | from mdpProblem import MDP, ProblemDomain, distribution
12 | from mdpGUI import GridDomain

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32

44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

12.2. Markov Decision Processes 297

import matplotlib.pyplot as plt

class partyMDP(MDP):
"""Simple 2-state, 2-Action Partying MDP Example
def __init__(self, discount=0.9):
states = {'healthy', 'sick'}
actions = {'relax', 'party'}
MDP.__init__(self, "party MDP", states, actions, discount)

nnn

def R(self,s,a):
HR(s,a)H
return { 'healthy': {'relax': 7, 'party': 10},
'sick': {'relax': @, 'party': 2 }}sl[al

def P(self,s,a):
"returns a dictionary of {s1:p1} such that P(s1 | s,a)=p1. Other
probabilities are zero.”
phealthy = { # P('healthy' | s, a)
"healthy': {'relax': 0.95, 'party': 0.7},
'sick': {'relax': 0.5, 'party': 0.1 }}[s]1l[al
return {'healthy':phealthy, 'sick':1-phealthy}

The distribution class is used to represent distributions as they are being
created. Probability distributions are represented as item : value dictionaries.
When being constructed, adding an item : value to the dictionary has to act
differently when the item is already in the dictionary and when it isn’t. The
add_prob method works whether the item is in the dictionary or not.

mdpProblem.py — (continued)

class distribution(dict):
"""A distribution is an item:prob dictionary.
Probabilities are added using add_prop.
def __init__(self,d):
dict.__init__(self,d)

def add_prob(self, item, pr):

"""adds a probability to a distribution.

Like dictionary assignment, but if item is already there, the
values are summed

if item in self:
self[item] += pr

else:
self[item] = pr

return self

12.2.1 Problem Domains

An MDP does not contain enough information to simulate a domain, because

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92

93

298 12. Planning with Uncertainty

(a) the rewards and resulting state can be correlated (e.g., in the grid do-
mains below, crashing into a wall results in both a negative reward and
the agent not moving), and

(b) it represents the expected reward (e.g., a reward of 1 is has the same ex-
pected value as a reward of 100 with probability 1/100 and 0 otherwise,
but these are different in a simulation).

A problem domain represents a problem as a function result from states
and actions into a distribution of (state, reward) pairs. This can be a subclass of
MDP because it implements R and P. A problem domain also specifies an initial
state and coordinate information used by the graphical user interfaces.

mdpProblem.py — (continued)

class ProblemDomain(MDP):
"""A ProblemDomain implements
self.result(state, action) -> {(reward, state):probability}.
Other pairs have probability are zero.
The probabilities must sum to 1.
def __init__(self, title, states, actions, discount,
initial_state=None, x_dim=0, y_dim = 0,
vinit=0, offsets={}):
"""A problem domain
title is list of titles
states is the list of states
actions is the list of actions
discount is the discount factor
initial_state is the state the agent starts at (for simulation)
if known
* x_dim and y_dim are the dimensions used by the GUI to show the
states in 2-dimensions
* vinit is the initial value
* offsets is a {action:(x,y)} map which specifies how actions are
displayed in GUI

nnn

b R

MDP.__init__(self, title, states, actions, discount)
if initial_state is not None:
self.state = initial_state
else:
self.state = random.choice(states)
self.vinit = vinit # value to reset v,q to
The following are for the GUI:
self.x_dim = x_dim
self.y_dim = y_dim
self.offsets = offsets

def state2pos(self,state):
"""When displaying as a grid, this specifies how the state is
mapped to (x,y) position.
The default is for domains where the (x,y) position is the state

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

94
95
96
97
98

99
100
101
102
103
104

105
106
107
108
109
110
111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

12.2. Markov Decision Processes 299

nnn

return state

def state2goal(self,state):
"""When displaying as a grid, this specifies how the state is
mapped to goal position.
The default is for domains where there is no goal

nnn

return None

def pos2state(self,pos):
"""When displaying as a grid, this specifies how the state is
mapped to (x,y) position.
The default is for domains where the (x,y) position is the state

nnn

return pos

def P(self, state, action):
"""Transition probability function
returns a dictionary of {s1:p1} such that P(s1 | state,action)=p1.
Other probabilities are zero.

nnn

res = self.result(state, action)

acc = le-6 # accuracy for test of equality

assert 1-acc<sum(res.values())<l+acc, f"result({state},{action})
not a distribution, sum={sum(res.values())}"

dist = distribution({})

for ((r,s),p) in res.items():
dist.add_prob(s,p)

return dist

def R(self, state, action):
"""Reward function R(s,a)
returns the expected reward for doing a in state s.

nnn

return sum(rxp for ((r,s),p) in self.result(state, action).items())

Tiny Game

The next example is the tiny game from Example 13.1 and Figure 13.1 of Poole
and Mackworth! [2023]], shown here as Figure There are 6 states and 4
actions. The state is represented as (x,y) where x counts from zero from the
left, and y counts from zero upwards, so the state (0,0) is on the bottom-left.
The actions are upC for up-careful, upR for up-risky, left, and right. Going left
from (0,2) results in a reward of 10 and ending up in state (0,0); going left
from (0, 1) results in a reward of —100 and staying there. Up-risky goes up but
with a chance of going left or right. Up careful goes up, but has a reward of
—1. Left and right are deterministic. Crashing into a wall results in a reward of
—1 and staying still.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

34
35
36
37
38
39
40
41
42
43
44

45
46
47
48

49
50
51
52
53

54
55
56
57
58

300 12. Planning with Uncertainty

—(0.2)| (1,2
+10 —

-100 | (0,1) | (1,1)

\

(0,0) | (1,0)

Figure 12.5: Tiny game

(Note that GridDomain means that it can be shown with the MDP GUI in

Section (12.2.3).

mdpExamples.py — (continued)

class MDPtiny(ProblemDomain, GridDomain):
def __init__(self, discount=0.9):

x_dim = 2 # x-dimension

y_dim = 3

ProblemDomain.__init__(self,
"Tiny MDP", # title
[(x,y) for x in range(x_dim) for y in range(y_dim)], #states
['right', 'upC', 'left', 'upR'], #actions
discount,
x_dim=x_dim, y_dim = y_dim,
offsets = {'right':(0.25,0), 'upC':(0,-0.25), 'left':(-0.25,0),

'"upR':(0,0.25)3}

)

def result(self, state, action):

"""return a dictionary of {(r,s):p} where p is the probability of
reward r, state s

a state is an (x,y) pair

(x,y) = state

right (-x,(1,y)) # reward is -1 if x was 1

left = (0,(0,y)) if x==1 else [(-1,(0,0)), (-100,(0,1)),
(10, (0,0))1Ly]

up = (0, (x,y+1)) if y<2 else (-1,(x,y))

if action == 'right':
return {right:1}

elif action == 'upC':
(r,s) = up

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

59
60
61
62
63

64

65
66
67

69
70
71
72
73
74
75
76
77

12.2. Markov Decision Processes 301

+3

10 1

-1

Figure 12.6: Grid world

return {(r-1,s):1}

elif action == 'left':
return {left:1}
elif action == 'upR':

return distribution({left:
@.1}).add_prob(right,0.1).add_prob(up,@.8)

Exercise: what is wrong with return {left: 0.1, right:0.1,
up:0.8%

To show GUI do
MDPtiny().viGUI()

Grid World

Here is the domain of Example 12.30 of Poole and Mackworth! [2023], shown
here in Figure A state is represented as (x,y) where x counts from zero
from the left, and y counts from zero upwards, so the state (0,0) is on the
bottom-left.

mdpExamples.py — (continued)

class grid(ProblemDomain, GridDomain):
"oy _dim % y_dim grid with rewarding states
def __init__(self, discount=0.9, x_dim=10, y_dim=10):
ProblemDomain.__init__(self,
"Grid World",
[(x,y) for x in range(y_dim) for y in range(y_dim)], #states
['up', 'down', 'right', 'left'], #actions
discount,
x_dim = x_dim, y_dim = y_dim,

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

78

79
80

81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98

99
100
101
102
103
104

105
106
107
108
109
110
111

302 12. Planning with Uncertainty

offsets = {'right':(0.25,0), 'up':(0,0.25), 'left':(-0.25,0),
"down':(0,-0.25)})
self.rewarding_states = {(3,2):-10, (3,5):-5, (8,2):10, (7,7):3 }
self.fling_states = {(8,2), (7,7)} # assumed a subset of
rewarding_states

def intended_next(self,s,a):
"""returns the (reward, state) in the direction a.
This is where the agent will end up if to goes in its
intended_direction
(which it does with probability 0.7).
(x,y) =s
if a=='up':
return (0, (x,y+1)) if y+1 < self.y_dim else (-1, (x,y))
if a=='down':
return (0, (x,y-1)) if y > 0 else (-1, (x,y))

if a=="right':
return (@, (x+1,y)) if x+1 < self.x_dim else (-1, (x,y))
if a=='left':

return (0, (x-1,y)) if x > 0 else (-1, (x,y))

def result(self,s,a):
"""return a dictionary of {(r,s):p} where p is the probability of
reward r, state s.
a state is an (x,y) pair
ro = self.rewarding_states[s] if s in self.rewarding_states else @
if s in self.fling_states:
return {(ro,(0,0)): 0.25, (ro,(self.x_dim-1,0)):0.25,
(ro, (0,self.y_dim-1)):0.25,
(ro, (self.x_dim-1,self.y_dim-1)):0.253}
dist = distribution({})
for al in self.actions:
(r1,s1) = self.intended_next(s,al)
rs = (r1+ro, si1)
p=0.7 if al==a else 0.1
dist.add_prob(rs,p)
return dist

Figure shows the immediate expected reward for each of the 100 states.
This was generated using grid().viGUI() and carrying out one step.

Monster Game

This is for the game depicted in Figure (Example 13.2 of Poole and Mack-
worth| [2023]). There are 25 locations where the agent can be, there can be no
prize or there can be a prize in one of the corners (P; ...P4). The agent only
gets a positive reward when gets to the prize. The agent can be damaged or
undamaged. There are possible monsters at the locations marked with M. If

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

113
114
115
116
117
118
119
120
121
122
123
124
125

12.2. Markov Decision Processes 303

Font:[10.0 e show Q-v.alues reset step
o show policy

Figure 12.7: Grid world GUI: grid().viGUI()

the agent lands on a monster when it is undamaged, it gets damaged. If the
agent lands on a monster when it is damaged, it gets a negative reward. It
can get undamaged by going to the location marked with R. It gets a negative
reward by crashing into a wall. There are 25 * 5 * 2 = 250 states. There are 4
actions, up, down, left, and right; the agent generally goes in the direction of the
action, but has a chance of going in one of the other directions.

mdpExamples.py — (continued)
class Monster_game(ProblemDomain, GridDomain):

vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
crash_reward = -1

prize_locs = [(0,0), (0,4), (4,0), (4,4)]
prize_apears_prob = 0.3
prize_reward = 10

monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
monster_appears_prob = 0.4
monster_reward_when_damaged = -10

repair_stations = [(1,4)]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

304 12. Planning with Uncertainty

P11 R Ps

0|Ps Py

o 1 2 3 4

Figure 12.8: Monster game

126

127 def __init__(self, discount=0.9):

128 x_dim = 5

129 y_dim = 5

130 # which damaged and prize to show

131 ProblemDomain.__init__(self,

132 "Monster Game",

133 [(x,y,damaged,prize)

134 for x in range(x_dim)

135 for y in range(y_dim)

136 for damaged in [False,True]

137 for prize in [None]+self.prize_locs], #states

138 ['up', 'down', 'right', 'left'], #actions

139 discount,

140 x_dim = x_dim, y_dim = y_dim,

141 offsets = {'right':(0.25,0), 'up':(0,0.25), 'left':(-0.25,0),
"down':(0,-0.25)})

142 self.state = (2,2,False,None)

143

144 def intended_next(self,xy,a):

145 """returns the (reward, (x,y)) in the direction a.

146 This is where the agent will end up if to goes in its

intended_direction

147 (which it does with probability 0.7).

148

149 (x,y) = xy # original x-y position

150 if a=="up':

151 return (@, (x,y+1)) if y+1 < self.y_dim else
(self.crash_reward, (x,y))

152 if a=='down':

153 return (0, (x,y-1)) if y > 0 else (self.crash_reward, (x,y))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12.2. Markov Decision Processes 305

154 if a=='right':

155 if (x,y) in self.vwalls or x+1==self.x_dim: # hit wall

156 return (self.crash_reward, (x,y))

157 else:

158 return (@, (x+1,y))

159 if a=='left':

160 if (x-1,y) in self.vwalls or x==0: # hit wall

161 return (self.crash_reward, (x,y))

162 else:

163 return (@, (x-1,y))

164

165 def result(self,s,a):

166 """return a dictionary of {(r,s):p} where p is the probability of

reward r, state s.

167 a state is an (x,y) pair

168 e

169 (x,y,damaged,prize) = s

170 dist = distribution({})

171 for al in self.actions: # possible results

172 mp = 0.7 if al==a else 0.1

173 mr, (xn,yn) = self.intended_next((x,y),al)

174 if (xn,yn) in self.monster_locs:

175 if damaged:

176 dist.add_prob((mr+self.monster_reward_when_damaged, (xn,yn,True,prize)),
mp*self.monster_appears_prob)

177 dist.add_prob((mr, (xn,yn,True,prize)),
mp*(1-self.monster_appears_prob))

178 else:

179 dist.add_prob((mr, (xn,yn,True,prize)),
mpxself.monster_appears_prob)

180 dist.add_prob((mr, (xn,yn,False,prize)),
mpx(1-self.monster_appears_prob))

181 elif (xn,yn) == prize:

182 dist.add_prob((mr+self.prize_reward, (xn,yn,damaged,None)),

mp)

183 elif (xn,yn) in self.repair_stations:

184 dist.add_prob((mr, (xn,yn,False,prize)), mp)

185 else:

186 dist.add_prob((mr, (xn,yn,damaged,prize)), mp)

187 if prize is None:

188 res = distribution({})

189 for (r,(x2,y2,d,p2)),p in dist.items():

190 res.add_prob((r, (x2,y2,d,None)),

px(1-self.prize_apears_prob))

191 for pz in self.prize_locs:

192 res.add_prob((r,(x2,y2,d,pz)),
pxself.prize_apears_prob/len(self.prize_locs))

193 return res

194 else:

195 return dist

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

306 12. Planning with Uncertainty

196

197 def state2pos(self, state):

198 """When displaying as a grid, this specifies how the state is
mapped to (x,y) position.

199 The default is for domains where the (x,y) position is the state

200

201 (x,y,d,p) = state

202 return (x,y)

203

204 def pos2state(self, pos):

205 """When displaying as a grid, this specifies how the state is
mapped to (x,y) position.

206 e

207 (x,y) = pos

208 (xs, ys, damaged, prize) = self.state

209 return (x, y, damaged, prize)

210

211 def state2goal(self,state):

212 """the (x,y) position for the goal

213 nn

214 (x, y, damaged, prize) = state

215 return prize

216

217 |# value iteration GUI for Monster game:

218 |# mg = Monster_game()

219 |# mg.viGUI() # then run vi a few times

220 |# to see other states, exit the GUI

221 |# mg.state = (2,2,True, (4,4)) # or other damaged/prize states

222 |# mg.viGUI()

12.2.2 Value lteration

The following implements value iteration for Markov decision processes.

A Q function is represented as a dictionary so Q[s][a] is the value for doing
action a in state s. The value function is represented as a dictionary so Vs] is
the value of state s. Policy 7 is represented as a dictionary where pi|s]|, where s
is a state, returns the action.

Note that the following defines vi to be a method in MDP.

mdpProblem.py — (continued)

128 |def vi(self, n):

129 """carries out n iterations of value iteration, updating value
function self.V

130 Returns a Q-function, value function, policy

131 nen

132 self.display(3,f"calling vi({n})")

133 for i in range(n):

134 self.Q = {s: {a: self.R(s,a)

135 +self.discountxsum(pl*self.V[s1]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

136

137
138
139
140
141
142
143
144
145

224
225
226
227
228
229
230
231
232
233
234
235

12.2. Markov Decision Processes 307

for (s1,pl1) in
self.P(s,a).items())
for a in self.actions}
for s in self.states}
self.V = {s: max(self.Q[s][al for a in self.actions)
for s in self.states}
self.pi = {s: argmaxd(self.Q[s])
for s in self.states}
return self.Q, self.V, self.pi

MDP.vi = vi
The following shows how this can be used.

mdpExamples.py — (continued)

Testing value iteration

Try the following:

pt = partyMDP(discount=0.9)
pt.vi(1)

pt.vi(100)

partyMDP (discount=0.99).vi(100)
partyMDP(discount=0.4).vi(100)

HoH H O H H

gr = grid(discount=0.9)
gr.viGUI()

q,v,pi = gr.vi(100)
al(7,2)]

H ¥ B H

12.2.3 Value Iteration GUI for Grid Domains

A GridDomain is a domain where the states can be mapped into (x,y) posi-
tions, and the actions can be mapped into up-down-left-right. They are special
because the viGUI() method to interact with them. It requires the following
values/methods be defined:

* self.x_dim and self.y_dim define the dimensions of the grid (so the
states are (x,y), where 0 < x < self.x_dimand 0 <y < self.y_dim.

* self.state2pos(state)] gives the (x,y) position of state. The default
is that that states are already (x,y) positions.

* self.state2goal(state)] gives the (x,y) position of the goal in state.
The default is None.

* self.pos2state(pos)] where pos is an (x,y) pair, gives the state that is
shown at position (x,y). When the state contain more information than
the (x,y) pair, the extra information is taken from self.state.

¢ self.offsets[a] defines where to display action a, as (x,y) offset for ac-
tion a when displaying Q-values.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

308 12. Planning with Uncertainty

mdpGUI.py — GUI for value iteration in MDPs

import matplotlib.pyplot as plt
from matplotlib.widgets import Button, CheckButtons, TextBox
from mdpProblem import MDP

class GridDomain(object):

def viGUI(self):

fig,self.ax = plt.subplots()

plt.subplots_adjust(bottom=0.2)

stepB = Button(plt.axes([0.8,0.05,0.1,0.075]1), "step")

stepB.on_clicked(self.on_step)

resetB = Button(plt.axes([0.65,0.05,0.1,0.075]), "reset")

resetB.on_clicked(self.on_reset)

self.qcheck = CheckButtons(plt.axes([0.2,0.05,0.35,0.075]),

["show Q-values”,"show policy"])

self.qcheck.on_clicked(self.show_vals)

self.font_box = TextBox(plt.axes([0.1,0.05,0.05,0.075]),
"Font:", textalignment="center")

self.font_box.on_submit(self.set_font_size)

self.font_box.set_val(str(plt.rcParams['font.size']))

self.show_vals(None)

plt.show()

def set_font_size(self, s):
plt.rcParams.update({'font.size': eval(s)})
plt.draw()

def show_vals(self,event):
self.ax.cla() # clear the axes

array = [[self.V[self.pos2state((x,y))] for x in range(self.x_dim)]
for y in range(self.y_dim)]
self.ax.pcolormesh([x-0.5 for x in range(self.x_dim+1)],
[y-0.5 for y in range(self.y_dim+1)],
array, edgecolors='black',cmap="'summer")
for cmap see
https://matplotlib.org/stable/tutorials/colors/colormaps.html
if self.qcheck.get_status()[1]: # "show policy”
for x in range(self.x_dim):
for y in range(self.y_dim):
state = self.pos2state((x,y))
maxv = max(self.Q[statel[a] for a in self.actions)
for a in self.actions:
if self.Q[state][a] == maxv:
draw arrow in appropriate direction
xoff, yoff = self.offsets[al
self.ax.arrow(x,y,xoff*2, yoffx2,
color="'red',width=0.05, head_width=0.2,
length_includes_head=True)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

97

98

99
100
101
102
103
104
105
106

12.2. Markov Decision Processes

if self.qcheck.get_status()[0@]: # "show g-values”
self.show_q(event)

else:

self.show_v(event)

self.ax.set_xticks(range(self.x_dim))

self.ax.set_xticklabels(range(self.x_dim))

self.ax.set_yticks(range(self.y_dim))

self.ax.set_yticklabels(range(self.y_dim))

plt.draw()

def on_step(self,event):

self.step()

self.show_vals(event)

def step(self):

"""The default step is one step of value iteration

self.vi(1)

def show_v(self,event):

nnn

show values

nnn

for x in range(self.x_dim):
for y in range(self.y_dim):
state = self.pos2state((x,y))

self.ax.text(x,y,"{val:.2f}".format(val=self.V[state]),ha='center"')

def show_q(self,event):
show g-values

nnn

nnn

for x in range(self.x_dim):
for y in range(self.y_dim):
state = self.pos2state((x,y))
for a in self.actions:

xoff, yoff = self.offsets[a]
self.ax.text(x+xoff,y+yoff,
"{val:.2f}".format(val=self.Q[state][a]),ha="center")

def on_reset(self,event):
self.V = {s:self.vinit for s in self.states}

309

nnn

self.Q = {s: {a: self.vinit for a in self.actions} for s in

self.states}

self.show_vals(event)

to use the GUI do some of:

import mdpExamples

mdpExamples.MDPtiny(discount=0.9).viGUI()
mdpExamples.grid(discount=0.9).viGUI()
mdpExamples.Monster_game(discount=0.9).viGUI() # see mdpExamples.py

n

if __name__ == main_

n,

print("Try: mdpExamples.MDPtiny(discount=0.9).viGUI()")

Figure shows the user interface for the tiny domain, which can be ob-

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

310

12. Planning with Uncertainty

21.71

20.34

* 21.34

== show g-values
== show policy

reset

step

Figure 12.9: Interface for tiny example, after a number of steps. Each rectangle
represents a state. In each rectangle are the 4 Q-values for the state. The left-
most number is for the left action; the rightmost number is for the right action;
the uppermost is for the upR (up-risky) action and the lowest number is for the
upC action. The arrow points to the action(s) with the maximum Q-value. Use
MDPtiny().viGUI() after loading mdpExamples.py

tained using
MDPtiny(discount=0.9).viGUI()

resizing it, checking “show g-values” and “show policy”, and clicking “step” a

few times.

To run the demo in class do:
% python -i mdpExamples.py
MDPtiny(discount=0.9).viGUI()

Figure [12.10| shows the user interface for the grid domain, which can be

obtained using
grid(discount=0.9).viGUI()

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

147
148
149
150
151
152
153
154
155
156
157
158
159
160

238
239
240
241
242
243
244
245
246

12.2. Markov Decision Processes 311

resizing it, checking “show g-values” and “show policy”, and clicking “step” a
few times.

Figure shows the optimal policy and Q-values after convergence (click-
ing “step” more does not change the Q-values) for the states where the agent
is damaged and the goal is in the top-right. The are 10 times as many states as
positions, so we can’t show them all. See the commented out lines at the end
of the Monster game code to reproduce this figure.

Exercise 12.1 Computing g before v may seem like a waste of space because we
don’t need to store g in order to compute the value function or the policy. Change
the algorithm so that it loops through the states and actions once per iteration, and
only stores the value function and the policy. Note that to get the same results as
before, you would need to make sure that you use the previous value of v in the
computation not the current value of v. Does using the current value of v hurt the
algorithm or make it better (in approaching the actual value function)?

12.2.4 Asynchronous Value lteration

This implements asynchronous value iteration, storing Q.
A Q function is represented using Q[s][a] as the value for doing action with
a in state s.

mdpProblem.py — (continued)
def avi(self,n):
states = list(self.states)
actions = list(self.actions)
for i in range(n):
s = random.choice(states)
a = random.choice(actions)
self.Q[s][a] = (self.R(s,a) + self.discount *
sum(pl * max(self.Q[s1]1[al]
for al in self.actions)
for (s1,p1) in self.P(s,a).items()))
return self.Q

make this a method for the MPD class:
MDP.avi = avi

The following shows how avi can be used.

mdpExamples.py — (continued)

Testing asynchronous value iteration
Try the following:

pt = partyMDP(discount=0.9)

pt.avi(10)

pt.vi(1000)

E=3

gr = grid(discount=0.9)
q = gr.avi(100000)
ql(7,2)]

H

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

312 12. Planning with Uncertainty

6.86 6.27
1 h 6.25;#.46 7.1(?+7.13 7.437*?.33
7.40 8.29 7.48
3 7.39 8.45 _8.50 | 9.06 _7.65
9.00 1Q861
8.44 131 8.59
2 8.26“ mB.SS
8.44 1301 8.59
9.00 1*1 *
1 7.39* 8.46 #8.51 | 9.06 §7.65
7.40 8182 7.50
0 6.26 #7.50 | 7.1587.19 [7.52 8 6.36
6.29 pALS 6.36
7 8 9
=] show g-values
reset step
== show policy

Figure 12.10: Interface for grid example, after a number of steps. Each rectan-
gle represents a state. In each rectangle are the 4 Q-values for the state. The
leftmost number is for the left action; the rightmost number is for the right ac-
tion; the uppermost is for the up action and the lowest number is for the down
action. The arrow points to the action(s) with the maximum Q-value. From
grid(discount=0.9).viGUI()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

12.2. Markov Decision Processes

6.19 8.59 15
4 6.19 i 7.88 wlgBS| 9.70
3.63 7.97 9.41
6.61 * 1*1
3 4.41 60| 3.80 N 7.98 | 7.43 0 7.77
4.60 5.72 4.42

® show Q-values

Font:|10.0 ® show policy

reset

step

313

Figure 12.11: Q-values and optimal policy for the monster game, for the states
where the agent is damaged and the goal is in the top-right.

def test_MDP(mdp, discount=0.9, eps=0.01):

nnn

nnn

mdp1 = mdp(discount=discount)
ql,vl,pil = mdp1.vi(100)

mdp2 = mdp(discount=discount)
g2 = mdp2.avi(1000)

same = all(abs(q1[s][al-q2[s][al) < eps

for s in mdp1.states
for a in mdp1.actions)

assert same, "vi and avi are different:\n{ql1}\n{qg2}"
print(f”passed unit test. vi and avi gave same result for {mdpl.title}")

if __name__ == "__main__":
test_MDP(partyMDP)

https://aipython.org

Version 0.9.15

tests vi and avi give the same answer for a MDP class mdp

December 23, 2024

https://aipython.org

314 12. Planning with Uncertainty

Exercise 12.2 Implement value iteration that stores the V-values rather than the
Q-values. Does it work better than storing Q? (What might “better” mean?)

Exercise 12.3 In asynchronous value iteration, try a number of different ways
to choose the states and actions to update (e.g., sweeping through the state-action
pairs, choosing them at random). Note that the best way may be to determine
which states have had their Q-values changed the most, and then update the pre-
vious ones, but that is not so straightforward to implement, because you need to
find those previous states.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13

Chapter 13

Reinforcement Learning

13.1 Representing Agents and Environments

The reinforcement learning agents and environments are instances of the gen-
eral agent architecture of Section where the percepts are (reward, state)
pairs. The state here is the state of the environment, not the state of the agent.
Thus this is assuming that the environment if fully observable.

Agents are told what actions are available to it to use, but don’t initially
know anything about the possible states.

¢ An agent implements the method select_action takes a (reward, state)
returns the next action (and updates the state of the agent).

¢ An environment implements the method do that takes an action and re-
turns a (reward, state) pair.

These are alternated to simulate the system. The simulation starts with the
agent choosing the initial action given the state, using the method initial_action(state),
which typically remembers the state and returns a random action.

13.1.1 Environments

RL environments have names to make tracing easier. An environment also
has a list of all of the actions that can be carried out in the environment. It is
initialized with the initial state.

rIProblem.py — Representations for Reinforcement Learning

import random
import math
from display import Displayable

315

14
15
16
17
18
19

20
21
22
23
24
25

27
28
29
30
31
32
33
34
35
36
37

38
39
40
41

43
44
45
46
47
48

316 13. Reinforcement Learning

from agents import Agent, Environment
from utilities import select_from_dist, argmaxe, argmaxd, flip

class RL_env(Environment):
def __init__(self, name, actions, state):
"""creates an environment given name, list of actions, and initial

nnn

state
self.name = name # the name of the environment
self.actions = actions # list of all actions
self.state = state # initial state
self.reward = None # last reward

must implement do(action)->(reward,state)

13.1.2 Agents

An agent initially knows what actions it can carry out (its abilities). The in-
teractions is started by calling initial_action, which tells the agent what the
initial state is. An agent typically remembers the state and returns an action.
It has no reason to prefer one action over another, so it chooses an action at
random.

rIProblem.py — (continued)

class RL_agent(Agent):
"""An RL_Agent
has percepts (s, r) for some state s and real reward r
def __init__(self, actions):
self.actions = actions

def initial_action(self, env_state):
"""return the initial action, and remember the state and action
Act randomly initially
Could be overridden to initialize data structures (as the agent now
knows about one state)
self.state = env_state
self.action = random.choice(self.actions)
return self.action

At each time step, an agent selects its next action action given the reward it
received and the environment.

rIProblem.py — (continued)

def select_action(self, reward, state):
Select the action given the reward and state
Remember the action in self.action
This implements "Act randomly” and should be overridden!

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

49
50
51
52
53
54
55
56
57
58
59

60
61

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

86
87

13.1. Representing Agents and Environments 317

self.reward = reward
self.action = random.choice(self.actions)
return self.action

def v(self, state):
"""estimate of the value of doing a best action in state.

nnn

return max(self.q(state,a) for a in self.actions)

def q(self, state, action):
""""estimate of value of doing action in state. Should be
overridden to be useful.

nnn

return 0

13.1.3 Simulating an Environment-Agent Interaction

The interaction between an agent and an environment is mediated by a simu-
lator that calls the agent and the environment in turn. Simulate in this section is

similar to Simulate of Section exceptitisinitialized by agent.initial_action(state),

and the rewards are accumulated.

rIProblem.py — (continued)

import matplotlib.pyplot as plt

class Simulate(Displayable):
"""simulate the interaction between the agent and the environment
for n time steps.
Returns a pair of the agent state and the environment state.
def __init__(self, agent, environment):
self.agent = agent
self.env = environment
self.reward_history = [] # for plotting
self.step = 0
self.sum_rewards = @

def start(self):
self.action = self.agent.initial_action(self.env.state)
return self

def go(self, n):

for i in range(n):
self.step += 1
(reward,state) = self.env.do(self.action)
self.display(2,f"step={self.step} reward={reward},

state={state}")

self.sum_rewards += reward
self.reward_history.append(reward)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

88
89
90

91
92
93
94
95

318 13. Reinforcement Learning

Monster Game

10000 {1 — Qalpha=0.2
UCB(0.1),alpha=0.2
—— Q alpha=1/k
5000 A
%]
<
g
o 07
G
IS
]
—5000 -
—10000 A
0 20000 40000 60000 80000 100000

step
Figure 13.1: Plotting the performance of some algorithms for the monster game

self.action = self.agent.select_action(reward,state)
self.display(2,f” action={self.action}")
return self

The following plots the sum of rewards as a function of the step in a simula-
tion. Figure shows the performance of three algorithms for the Monster
Game (Sections [12.2.1| and [13.1.6). One the x-axis is the number of actions.
On the y-axis is the cumulative reward. The algorithm corresponding to the
blue line has not learned very well; the plot keeps going down (but less than
it did initially). The learner represented by the green line starts getting posi-
tive performance after about 20,000 steps. It took about 55,000 steps for it to
have gained back the cost of exploration (when it crosses y = 0). The learner
represented by the orange line seems to have learned quicker, but is more er-
ratic. Each algorithm should be run multiple times, because the performance
can vary a lot, even for the same problem, algorithm, and parameter settings.
This graph can be reproduced (but the lines will be different) using code at the
bottom of RLQlearner. py.

rIProblem.py — (continued)

def plot(self, label=None, step_size=None, xscale='linear'):

nnn

plots the rewards history in the simulation
label is the label for the plot
step_size is the number of steps between each point plotted

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

96
97
98
99
100

101
102
103
104
105
106
107
108
109
110

111
112
113
114
115
116

117
118
119
120
121
122
123
124

11
12
13
14

15
16
17
18
19

13.1. Representing Agents and Environments 319

xscale is 'log' or 'linear'

returns sum of rewards

if step_size is None: #for long simulations (> 999), only plot some
points
step_size = max(1,len(self.reward_history)//500)

if label is None:
label = self.agent.name

plt.ion()

plt.xscale(xscale)

plt.title(self.env.name)

plt.xlabel("step”)

plt.ylabel(”Sum of rewards")

sum_history, sum_rewards = acc_rews(self.reward_history, step_size)

plt.plot(range(0,len(self.reward_history),step_size), sum_history,
label=1abel)

plt.legend()

plt.draw()

return sum_rewards

def acc_rews(rews,step_size):
"""returns the rolling sum of the values, sampled each step_size, and
the sum
won
acc = []
sumr = Q; i=0
for e in rews:

sumr += e
i+=1
if (i%step_size == 0): acc.append(sumr)

return acc, sumr

13.1.4 Party Environment

Here is the definition of the simple 2-state, 2-action decision about whether to
party or relax (Example 12.29 in Poole and Mackworth| [2023]). (Compare to
the MDP representation of page [296)

rlIExamples.py — Some example reinforcement learning environments
from rlProblem import RL_env
class Party_env(RL_env):
def __init__(self):
RL_env.__init__(self, "Party Decision”, ["party"”, "relax"],
"healthy")

def do(self, action):
"""updates the state based on the agent doing action.
returns reward,state

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

320 13. Reinforcement Learning

if self.state=="healthy":
if action=="party":
self.state = "healthy” if flip(@.7) else "sick"
self.reward = 10
else: # action=="relax”
self.state = "healthy” if flip(0.95) else "sick”
self.reward = 7
else: # self.state=="sick”
if action=="party":
self.state = "healthy” if flip(@0.1) else "sick”
self.reward = 2
else:
self.state = "healthy” if flip(@.5) else "sick”
self.reward = @
return self.reward, self.state

13.1.5 Environment from a Problem Domain

Env_fom_ProblemDomain takes a ProblemDomain (page and constructs an
environment that can be used for reinforcement learners.

As explained in Section [12.2.1} the representation of an MDP does not con-
tain enough information to simulate a system, because it loses any dependency
between the rewards and the resulting state (e.g., hitting the wall and having
a negative reward may be correlated), and only represents the expected value
of rewards, not how they are distributed. The ProblemDomain class defines the
result method to map states and actions into distributions over (reward, state)
pairs.

rIProblem.py — (continued)

class Env_from_ProblemDomain(RL_env):
def __init__(self, prob_dom):
RL_env.__init__(self, prob_dom.title, prob_dom.actions,
prob_dom.state)
self.problem_domain = prob_dom
self.state = prob_dom.state
self.x_dim = prob_dom.x_dim
self.y_dim = prob_dom.y_dim
self.offsets = prob_dom.offsets
self.state2pos = self.problem_domain.state2pos
self.state2goal = self.problem_domain.state2goal
self.pos2state = self.problem_domain.pos2state

def do(self, action):
"""updates the state based on the agent doing action.
returns state,reward

nnn

(self.reward, self.state) =
select_from_dist(self.problem_domain.result(self.state, action))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

144
145
146

36
37
38
39
40
41
42
43
44
45
46
47
48

13.1. Representing Agents and Environments 321

Pi{1R Ps

0|P3 Py

o 1 2 3 4

Figure 13.2: Monster game

self.problem_domain.state = self.state
self.display(2,f"do({action} -> ({self.reward}, {self.state})")
return (self.reward,self.state)

13.1.6 Monster Game Environment

This is for the game depicted in Figure (Example 13.2 of [Poole and Mack-
worth! [2023]]). This is an alternative representation to that of Section
which defined the distribution over reward-state pairs. This directly builds a
simulator, which might be easier to understand and easier adapt to new envi-
ronments.

There are 25 * 5 x 2 = 250 states. The agent does not know anything about
how the environment works; it just knows what actions are available to it and
what state it is in. It has to learn what to do.

rlExamples.py — (continued)
import random

from utilities import flip

from rlProblem import RL_env

class Monster_game_env(RL_env):

x_dim = 5

y_dim = 5

vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
hwalls = [] # not implemented

crashed_reward = -1

prize_locs = [(0,0), (0,4), (4,0), (4,4)]

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

322

prize_apears_prob = 0.3
prize_reward = 10

13. Reinforcement Learning

monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
monster_appears_prob = 0.4
monster_reward_when_damaged = -10
repair_stations = [(1,4)]

actions = ["up”,"down”,"left"”,"right"]

def __init__(self):

State:
self.x = 2
self.y = 2

self.damaged = False
self.prize = None

Statistics
self.number_steps =
self.accumulated_rew
self.min_accumulated
self.min_step = 0
self.zero_crossing =

0

ards = @ # sum of rewards received

_rewards = 0@

0

RL_env.__init__(self, "Monster Game", self.actions, (self.x,

self.y, self.damaged, self.prize))

self.display(2,"","Step"”,"Tot Rew","Ave Rew",6 sep="\t")

def do(self,action):

nnn

returns reward,state

nnn

updates the state based on the agent doing action.

assert action in self.actions, f"Monster game, unknown action:

{action}"”
self.reward = 0.0
A prize can appear

if self.prize is None and flip(self.prize_apears_prob):
random.choice(self.prize_locs)

self.prize =
Actions can be noi
if flip(0.4):
actual_direction
else:
actual_direction

sy

= random.choice(self.actions)

= action

Modeling the actions given the actual direction

if actual_direction

== "right":

if self.x==self.x_dim-1 or (self.x,self.y) in self.vwalls:

self.reward += self.crashed_reward

else:
self.x += 1
elif actual_directio

n == "left":

if self.x==0 or (self.x-1,self.y) in self.vwalls:

self.reward += self.crashed_reward

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137

139
140
141

13.1. Representing Agents and Environments 323

else:
self.x += -1
elif actual_direction == "up"”:
if self.y==self.y_dim-1:
self.reward += self.crashed_reward
else:
self.y += 1
elif actual_direction == "down":
if self.y==0:
self.reward += self.crashed_reward
else:
self.y += -1

n

else:
raise RuntimeError(f"unknown_direction: {actual_direction}")

Monsters
if (self.x,self.y) in self.monster_locs and
flip(self.monster_appears_prob):
if self.damaged:
self.reward += self.monster_reward_when_damaged
else:
self.damaged = True
if (self.x,self.y) in self.repair_stations:
self.damaged = False

Prizes

if (self.x,self.y) == self.prize:
self.reward += self.prize_reward
self.prize = None

Statistics

self.number_steps += 1

self.accumulated_rewards += self.reward

if self.accumulated_rewards < self.min_accumulated_rewards:
self.min_accumulated_rewards = self.accumulated_rewards
self.min_step = self.number_steps

if self.accumulated_rewards>0 and
self.reward>self.accumulated_rewards:
self.zero_crossing = self.number_steps

self.display(2,""”,self.number_steps,self.accumulated_rewards,

self.accumulated_rewards/self.number_steps,sep="\t")

return self.reward, (self.x, self.y, self.damaged, self.prize)

The following methods are used by the GUI (Section page343) so that the
states can be shown.

rlExamples.py — (continued)

For GUI
def state2pos(self,state):
"""the (x,y) position for the state

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

11
12
13
14
15
16
17
18
19
20
21
22

23
24

26
27
28
29
30
31

324 13. Reinforcement Learning

nnn

(x, y, damaged, prize) = state
return (x,y)

def state2goal(self,state):
"""the (x,y) position for the goal
(x, y, damaged, prize) = state
return prize

def pos2state(self,pos):
"""the state corresponding to the (x,y) position.
The damages and prize are not shown in the GUI
(x,y) = pos
return (x, y, self.damaged, self.prize)

13.2 Q Learning

To run the Q-learning demo, in folder “aipython”, load
“rlQLearner.py”, and copy and paste the example queries at the
bottom of that file.

rIQLearner.py — Q Learning

import random

import math

from display import Displayable

from utilities import argmaxe, argmaxd, flip

from rlProblem import RL_agent, epsilon_greedy, ucb

class Q_learner(RL_agent):

"""A Q-learning agent has

belief-state consisting of
state is the previous state (initialized by RL_agent
g is a {(state,action):value} dict
visits is a {(state,action):n} dict. n is how many times action was

done in state

acc_rewards is the accumulated reward

nnn

rlQLearner.py — (continued)

def __init__(self, name, actions, discount,
exploration_strategy=epsilon_greedy, es_kwargs={},
alpha_fun=lambda _:0.2, Qinit=0):

nnn

name is string representation of the agent
actions is the set of actions the agent can do

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

32
33

34
35

36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75

13.2. Q Learning 325

discount is the discount factor

exploration_strategy is the exploration function, default
"epsilon_greedy”

es_kwargs is extra arguments of exploration_strategy

alpha_fun is a function that computes alpha from the number of
visits

Qinit is the initial g-value

RL_agent.__init__(self, actions)

self.name = name

self.discount = discount

self.exploration_strategy = exploration_strategy

self.es_kwargs = es_kwargs

self.alpha_fun = alpha_fun

self.Qinit = Qinit

self.acc_rewards = @

self.Q = {}

self.visits = {}

The initial action is a random action. It remembers the state, and initializes the
data structures.

rlIQLearner.py — (continued)

def initial_action(self, state):

""" Returns the initial action; selected at random

Initialize Data Structures

self.state = state

self.Q[state] = {act:self.Qinit for act in self.actions}

self.visits[state] = {act:0 for act in self.actions}

self.action = self.exploration_strategy(state, self.Q[state],
self.visits[state], #xself.es_kwargs)

self.display(2, f"Initial State: {state} Action {self.action}")

self.display(2,"s\ta\tr\ts'\tQ")

display looks best if states and actions are < 8 characters
return self.action

def select_action(self, reward, next_state):
"""give reward and next state, select next action to be carried
out"""
if next_state not in self.visits: # next_state not seen before
self.Q[next_state] = {act:self.Qinit for act in self.actions}
self.visits[next_state] = {act:0 for act in self.actions?}
self.visits[self.state]l[self.action] +=1
alpha = self.alpha_fun(self.visits[self.state][self.action])
self.Q[self.state][self.action] += alphax*(
reward
+ self.discount * max(self.Q[next_state].values())
- self.Q[self.state][self.action])
self.display(2,self.state, self.action, reward, next_state,
self.Q[self.state][self.action], sep='\t'")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

76

77
78
79

80

82
83
84
85
86

88
89
90
91
92
93

94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110

326 13. Reinforcement Learning

self.action = self.exploration_strategy(next_state,
self.Q[next_state],
self.visits[next_state],*xself.es_kwargs)
self.state = next_state
self.display(3,f"Agent {self.name} doing {self.action} in state
{self.state}")
return self.action

The GUI requires the g(s,a) functions:

rlQLearner.py — (continued)

def q(self,s,a):
if s in self.Q and a in self.Q[s]:
return self.Q[s][a]
else:
return self.Qinit

SARSA is the same as Q-learning except in the action selection. SARSA changes
3 lines:

rlQLearner.py — (continued)

class SARSA(Q_learner):
def __init__(self,*args, **nargs):
Q_learner.__init__(self,*args, #*xnargs)

def select_action(self, reward, next_state):
"""oive reward and next state, select next action to be carried
out"""
if next_state not in self.visits: # next state not seen before
self.Q[next_state] = {act:self.Qinit for act in self.actions}
self.visits[next_state] = {act:0 for act in self.actions}
self.visits[self.state][self.action] +=1
alpha = self.alpha_fun(self.visits[self.state][self.action])
next_action = self.exploration_strategy(next_state,
self.Q[next_state],
self.visits[next_state],xxself.es_kwargs)
self.Q[self.state][self.action] += alpha*(
reward
+ self.discount * self.Q[next_state][next_action]
- self.Q[self.state]l[self.action])
self.display(2,self.state, self.action, reward, next_state,
self.Q[self.state][self.action], sep='\t')
self.state = next_state
self.action = next_action
self.display(3,f"Agent {self.name} doing {self.action} in state
{self.state}")
return self.action

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

13.2. Q Learning 327

13.2.1 Exploration Strategies

Two explorations strategies are defined: epsilon-greedy and upper confidence
bound (UCB).

In general an exploration strategy takes two arguments, and some optional
arguments depending on the strategy.

* State is the state that action is chosen for
® Qsisa {action : q_value} dictionary for the state

e visits is a {action : n} dictionary for the current state; where n is the num-
ber of times that the action has been carried out in the current state.

rIProblem.py — (continued)

def epsilon_greedy(state, Qs, visits={}, epsilon=0.2):

"""select action given epsilon greedy
Qs is the {action:Q-value} dictionary for current state
visits is ignored
epsilon is the probability of acting randomly
if flip(epsilon):

return random.choice(list(Qs.keys())) # act randomly
else:

return argmaxd(Qs) # pick an action with max Q

def ucb(state, Qs, visits, c=1.4):
"""select action given upper-confidence bound
Qs is the {action:Q-value} dictionary for current state
visits is the {action:n} dictionary for current state

0.01 is to prevent divide-by zero when visits[a]==0

nnn

Ns = sum(visits.values())

ucb1l = {a:Qs[al+c*math.sqrt(Ns/(0.01+visits[a]))
for a in Qs.keys()}

action = argmaxd(ucb1)

return action

Exercise 13.1 Implement a soft-max action selection. Choose a temperature that
works well for the domain. Explain how you picked this temperature. Compare
the epsilon-greedy, ucb, soft-max and optimism in the face of uncertainty for vari-
ous parameter settings.

13.2.2 Testing Q-learning

The unit tests are for the 2-action 2-state decision about whether to relax or
party (Example 12.29 of Poole and Mackworth|[2023]].

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

112
113
114
115
116
117
118

119

120
121
122

123
124
125
126
127
128
129
130
131
132

133
134
135

137
138
139
140
141

142

143

144

328

13. Reinforcement Learning

Note that simulating the same agent multiple times does not restart the

agent; it keeps learning. Try the plotting some of the other methods; make sure
to try multiple agents with the same parameter values before deciding whether
a method with particular parameter settings is good or not. To do this, make
sure you construct a new agent.

rlQLearner.py — (continued)

H###HHH TEST CASES #HHHHHHH

from rlProblem import Simulate,epsilon_greedy, ucb, Env_from_ProblemDomain
from rlExamples import Party_env, Monster_game_env

from rlQLearner import Q_learner

from mdpExamples import MDPtiny, partyMDP

def test_RL(learnerClass, mdp=partyMDP, env=Party_env(), discount=0.9,

if

__nhame__ == "__main_

eps=2, **lkwargs):
"""tests whether RL on env has the same (within eps) Q-values as vi on
mdp"""
mdp1 = mdp(discount=discount)
ql,vl,pil = mdp1.vi(1000)
ag = learnerClass(learnerClass.__name
*x1kwargs)
sim = Simulate(ag,env).start()
sim.go(100000)
same = all(abs(ag.q(s,a)-ql1[sl[al) < eps
for s in mdp1l.states
for a in mdp1l.actions)
assert same, (f"""Unit test failed for {env.name}, in {ag.name} Q=
+str({(s,a):ag.q(s,a) for s in mdpl.states
for a in mdp1l.actions})
+""" in vi Q={q1}""")
print(f"Unit test passed. For {env.name}, {ag.name} has same Q-value as
value iteration”)

n

env.actions, discount,

—_

nnn

",

test_RL(Q_learner, alpha_fun=lambda k:10/(9+k))
#test_RL(SARSA) # should this pass? Why or why not?

The following are some calls you can play with. Run the commented-out

code. Try other agents, including agents with the same settings.

rlQLearner.py — (continued)

#env = Party_env()
env = Env_from_ProblemDomain(MDPtiny())
Some RL agents with different parameters:

ag

= Q_learner("eps (@.1) greedy”, env.actions, 0.7)

ag_ucb = Q_learner("ucb”, env.actions, 0.7, exploration_strategy = ucbh,

es_kwargs={'c':0.1})

ag_opt = Q_learner("optimistic”, env.actions, 0.7, Qinit=100,

es_kwargs={"'epsilon':0})

ag_exp_m = Q_learner("more explore”, env.actions, 0.7,

es_kwargs={'epsilon':0.5})

ag_greedy = Q_learner("disc @.1", env.actions, 0.1, Qinit=100)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

145
146

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

13.3. Q-leaning with Experience Replay 329

sa = SARSA("SARSA", env.actions, 0.9)
sucb = SARSA("SARSA ucb"”, env.actions, 0.9, exploration_strategy = ucb,
es_kwargs={"'c':1})

sim_ag = Simulate(ag,env).start()

sim_ag.go(1000)

ag.Q # get the learned Q-values

sim_ag.plot()

sim_ucb = Simulate(ag_ucb,env).start(); sim_ucb.go(1000); sim_ucb.plot()
Simulate(ag_opt,env).start().go(1000).plot()
Simulate(ag_exp_m,env).start().go(1000).plot()
Simulate(ag_greedy,env).start().go(1000).plot()
Simulate(sa,env).start().go(1000).plot()
Simulate(sucb,env).start().go(1000).plot()

HoH HF ¥ H O H EH

from mdpExamples import MDPtiny

envt = Env_from_ProblemDomain(MDPtiny())

agt = Q_learner("”"Q alpha=0.8", envt.actions, 0.8)
#Simulate(agt, envt).start().go(1000).plot()

Monster Game

mon_env = Monster_game_env()

magl = Q_learner(”Q alpha=0.2", mon_env.actions, 0.9)

#Simulate(magl,mon_env).start().go(100000).plot()

mag_ucb = Q_learner("UCB(@.1),alpha=0.2", mon_env.actions, 0.9,
exploration_strategy = uch, es_kwargs={'c':0.13})

#Simulate(mag_ucb,mon_env).start().go(100000) .plot()

mag2 = Q_learner(”Q alpha=1/k", mon_env.actions, 0.9,
alpha_fun=lambda k:1/k)

#Simulate(mag2,mon_env).start().go(100000).plot()

mag3 = Q_learner("alpha=10/(9+k)"”, mon_env.actions, 0.9,
alpha_fun=lambda k:10/(9+k))

#Simulate(mag3,mon_env).start().go(100000).plot()

mag4 = Q_learner("ucbh & alpha=10/(9+k)", mon_env.actions, 0.9,
alpha_fun=lambda k:10/(9+k),
exploration_strategy = ucb, es_kwargs={'c':0.13})

#Simulate(mag4,mon_env).start().go(100000) .plot()

13.3 Q-leaning with Experience Replay

A bounded buffer remembers values up to size buffer_size. Random values
can be obtained using get. Once the bounded buffer is full, all old experiences
have the same chance of being in the buffer.

rIQExperienceReplay.py — Q-Learner with Experience Replay

1 |from rlQLearner import Q_learner

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

33
34
35
36
37
38
39
40
41

42
43

44
45
46
47
48
49
50
51
52

53

330 13. Reinforcement Learning

from utilities import flip
import random

class BoundedBuffer(object):
def __init__(self, buffer_size=1000):
self.buffer_size = buffer_size
self.buffer = [0]xbuffer_size
self.number_added = 0

def add(self, new_value):
if self.number_added < self.buffer_size:
self.buffer[self.number_added] = new_value
else:
if flip(self.buffer_size/self.number_added):
position = random.randrange(self.buffer_size)
self.buffer[position] = new_value
self.number_added += 1

def get(self):
return self.buffer[random.randrange(min(self.number_added,
self.buffer_size))]

A Q_ER_Learner does Q-leaning with experience replay. It only uses action
replay after burn_in number of steps.

rIQExperienceReplay.py — (continued)

class Q_ER_learner(Q_learner):
def __init__(self, name, actions, discount,
max_buffer_size=10000,
num_updates_per_action=10, burn_in=100, **xq_kwargs):
Q-learner with experience replay
name is the name of the agent (e.g., in a game)
actions is the set of actions the agent can do
discount is the discount factor
max_buffer_size is the maximum number of past experiences that is
remembered
burn_in is the number of steps before using old experiences
num_updates_per_action is the number of g-updates for past
experiences per action
g_kwargs are any extra parameters for Q_learner

nnn

nnn

Q_learner.__init__(self, name, actions, discount, #*x*q_kwargs)
self.experience_buffer = BoundedBuffer(max_buffer_size)
self.num_updates_per_action = num_updates_per_action
self.burn_in = burn_in

def select_action(self, reward, next_state):
"""oive reward and new state, select next action to be carried
Out" nn
self.experience_buffer.add((self.state,self.action,reward,next_state))
#remember experience

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79

80

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

13.3. Q-leaning with Experience Replay 331

if next_state not in self.visits: # next_state not seen before
self.Q[next_state] = {act:self.Qinit for act in self.actions}
self.visits[next_state] = {act:0 for act in self.actions}
self.visits[self.state]l[self.action] +=1
alpha = self.alpha_fun(self.visits[self.state][self.action])
self.Q[self.state][self.action] += alphax*(
reward
+ self.discount * max(self.Q[next_state].values())
- self.Q[self.state]l[self.action])
self.display(2,self.state, self.action, reward, next_state,
self.Q[self.state][self.action], sep='\t')
do some updates from experience buffer
if self.experience_buffer.number_added > self.burn_in:
for i in range(self.num_updates_per_action):
(s,a,r,ns) = self.experience_buffer.get()
self.visits[s][a] +=1 # is this correct?
alpha = self.alpha_fun(self.visits[s][al)
self.Q[s][a] += alpha * (r +
self.discount* max(self.Q[ns][nal]
for na in self.actions)
-self.Qls][al)
CHOOSE NEXT ACTION #i##
self.action = self.exploration_strategy(next_state,
self.Q[next_state],
self.visits[next_state],*x*self.es_kwargs)
self.state = next_state
self.display(3,f"Agent {self.name} doing {self.action} in state
{self.state}")
return self.action

The following code plots the performance. The experience replay learner
performance cannot be directly compared to Q-learning as it does more up-
dates per action.

rlIQExperienceReplay.py — (continued)
from rlProblem import Simulate

from rlExamples import Monster_game_env

from rlQLearner import magl, mag2, mag3

mon_env = Monster_game_env()

maglar = Q_ER_learner("Q_ER", mon_env.actions,@.9,
num_updates_per_action=5, burn_in=100)

Simulate(maglar,mon_env).start().go(100000).plot()

mag3ar = Q_ER_learner("Q_ER alpha=10/(9+k)", mon_env.actions, 0.9,
num_updates_per_action=50, burn_in=1000,
alpha_fun=lambda k:10/(9+k))

Simulate(mag3ar,mon_env).start().go(100000).plot()

from rlQLearner import test_RL

n

if __name__ == "__main__

n,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

332 13. Reinforcement Learning

98 ‘ test_RL(Q_ER_learner, alpha_fun=lambda k:10/(9+k))

Exercise 13.2 Why does this have a burn-in? What problem might this solve?
How much does the burn-in affect the result?

Exercise 13.3 What is a fair way to compare the learning rate of Q_ER_learner and
Q_learner, or Q_ER_learners with different values of num_updates_per_action?
(Would this matter if the environment is a simulation versus in the real world?)
Implement a comparison that counts the number of updates, rather than the num-
ber of actions. How much does num_updates_per_action matter?

13.4 Stochastic Policy Learning Agent

The following agent is like a Q-learning agent but maintains a stochastic policy.
The policy is represented as unnormalized counts for each action in a state (as
in a Dirichlet distribution). This is the code described in Section 14.7.2 and
Figure 14.10 of Poole and Mackworth! [2023].

rIStochasticPolicy.py — Simulations of agents learning

11 | from display import Displayable

12 |import utilities # argmaxall for (element,value) pairs
13 | import matplotlib.pyplot as plt

14 |import random

15 | from rlQLearner import Q_learner

16
17 |class StochasticPIAgent(Q_learner):

18 """This agent maintains the Q-function for each state.

19 Chooses the best action using empirical distribution over actions

20 e

21 def __init__(self, name, actions, discount=0, pi_init=1, **nargs):

2 e

23 name is the name of the agent (e.g., in a game)

24 actions is the set of actions the agent can do.

25 discount is the discount factor (@ is appropriate if there is a
single state)

26 pi_init gives the prior counts (Dirichlet prior) for the policy
(must be >0)

27 o

28 #self.max_display_level = 3

29 Q_learner.__init__(self, name, actions, discount,

30 exploration_strategy=self.action_from_stochastic_policy,

31 **nargs)

32 self.pi_init = pi_init

33 self.pi = {}

34

35 def initial_action(self, state):

36 """ update policy pi then do initial action from Q_learner

37 o

38 self.pi[state] = {act:self.pi_init for act in self.actions?}

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

39
40
41
42
43
44
45

46
47
48
49

50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67
68

69
70
71
72
73

13.4. Stochastic Policy Learning Agent 333

return Q_learner.initial_action(self, state)

def action_from_stochastic_policy(self, next_state, gs, vs):
a_best = utilities.argmaxd(self.Q[self.statel)
self.pi[self.state][a_best] +=1
if next_state not in self.pi:
self.pilnext_state] = {act:self.pi_init for act in
self.actions}
return select_from_dist(self.pilnext_state])

def normalize(dist):
"""dict is a {value:number} dictionary, where the numbers are all
non-negative
returns dict where the numbers sum to one
tot = sum(dist.values())
return {var:val/tot for (var,val) in dist.items()}

def select_from_dist(dist):
rand = random.random()
for (act,prob) in normalize(dist).items():
rand -= prob
if rand < 0:
return act

The agent can be tested on the reinforcement learning benchmarks:

rIStochasticPolicy.py — (continued)

Testing on RL benchmarks ###Hi

from rlProblem import Simulate

import rlExamples

mon_env = rlExamples.Monster_game_env()

magspi =StochasticPIAgent(mon_env.name, mon_env.actions,9.9)

#Simulate(magspi,mon_env).start().go(100000).plot()

magspil@ = StochasticPIAgent("stoch 10/(9+k)", mon_env.actions,9.9,
alpha_fun=lambda k:10/(9+k))

#Simulate(magspil@,mon_env).start().go(100000).plot()

from rlQLearner import test_RL

n

if __name__ == main_

test_RL(StochasticPIAgent, alpha_fun=lambda k:10/(9+k))

",

Exercise 13.4 Test some other ways to determine the probabilities for the stochas-
tic policy in StochasticPIAgent. (It currently can be seen as using a Dirichlet
where the probability represents the proportion of times each action is best plus
pseudo-counts).

Replace self.pilself.state][a_best] +=1 with something like
self.pilself.statel[a_best] *= cforsomec > 1. E.g., c = 1.1 so it chooses that
action 10% more, independently of the number of times tried. (Try to change the
code as little as possible; make it so that either the original or different values of c
can be run without changing your code. Warning: watch out for overflow.)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20

334 13. Reinforcement Learning

(a) Try for multiple c; which one works best for the Monster game?

(b) Suggest an alternative way to update the probabilities in the policy (e.g.,
adding ¢ to policy that is then normalized or some other methods). How
well does it work?

13.5 Model-based Reinforcement Learner

To run the demo, in folder “aipython”, load “r1ModelLearner.py”, and
copy and paste the example queries at the bottom of that file. This
assumes Python 3.

A model-based reinforcement learner builds a Markov decision process model
of the domain, simultaneously learns the model and plans with that model.
The model-based reinforcement learner uses the following data structures:

e Q[s][a] is dictionary that, given state s and action a returns the Q-value,
the estimate of the future (discounted) value of being in state s and doing
action a. (Note that Q is the list but q is the function.)

* R[s][a] is dictionary that, given a (s,a) state s and action a is the average
reward received from doing a in state s.

e T[s][a][s] is dictionary that, given states s and s’ and action a returns the
number of times a was done in state s and the result was state s’. Note
that s’ is only a key if it has been the result of doing a in s; there are no
zero counts recorded.

e visits[s|[a] is dictionary that, given state s and action a returns the number
of times action a was carried out in state s. This is the C of Figure 13.6 of
Poole and Mackworth! [2023].

Note that visits[s|[a] = Yo T[s]|[a][s'] but is stored separately to keep the
code more readable.

The main difference to Figure 13.6 of Poole and Mackworth [2023] is the code
below does a fixed number of asynchronous value iteration updates per step.

rIModelLearner.py — Model-based Reinforcement Learner

import random

from rlProblem import RL_agent, Simulate, epsilon_greedy, ucb
from display import Displayable

from utilities import argmaxe, flip

class Model_based_reinforcement_learner (RL_agent):
"""A Model-based reinforcement learner

nnn

def __init__(self, name, actions, discount,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51
52
53
54

56
57
58

59
60
61
62
63
64
65
66
67

13.5. Model-based Reinforcement Learner 335

exploration_strategy=epsilon_greedy, es_kwargs={},
Qinit=0,
updates_per_step=10):
name is the name of the agent (e.g., in a game)
actions is the list of actions the agent can do
discount is the discount factor
explore is the proportion of time the agent will explore
Qinit is the initial value of the Q's
updates_per_step is the number of AVI updates per action
label is the label for plotting

nnn

nnn

RL_agent.__init__(self, actions)

self.name = name

self.actions = actions

self.discount = discount
self.exploration_strategy = exploration_strategy
self.es_kwargs = es_kwargs

self.Qinit = Qinit

self.updates_per_step = updates_per_step

rIModelLearner.py — (continued)

def initial_action(self, state):
""" Returns the initial action; selected at random
Initialize Data Structures

nnn

self.action = RL_agent.initial_action(self, state)

self.T = {self.state: {a: {} for a in self.actions}}
self.visits = {self.state: {a: @ for a in self.actions}}
self.Q = {self.state: {a: self.Qinit for a in self.actions}}
self.R = {self.state: {a: @ for a in self.actions}}
self.states_list = [self.state] # list of states encountered
self.display(2, f"Initial State: {state} Action {self.action}")
self.display(2,"s\ta\tr\ts'\tQ")

return self.action

rIModelLearner.py — (continued)

def select_action(self, reward, next_state):

"""do num_steps of interaction with the environment

for each action, do updates_per_step iterations of asynchronous
value iteration

if next_state not in self.visits: # has not been encountered before
self.states_list.append(next_state)
self.visits[next_state] = {a:@ for a in self.actions}
self.T[next_state] = {a:{} for a in self.actions}
self.Q[next_state] = {a:self.Qinit for a in self.actions?}
self.R[next_state] = {a:0 for a in self.actions?}

if next_state in self.T[self.state][self.action]:
self.T[self.state][self.action][next_state] += 1

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

336 13. Reinforcement Learning

68 else:

69 self.T[self.state][self.action][next_state] = 1

70 self.visits[self.state][self.action] += 1

71 self.R[self.state][self.action] +=
(reward-self.R[self.state][self.action])/self.visits[self.state][self.action]

72 st,act = self.state,self.action #initial state-action pair for AVI

73 for update in range(self.updates_per_step):

74 self.Q[stl[act] = self.R[st][act]+self.discountx*(

75 sum(self.T[st]l[act][nst]/self.visits[st]l[actIxself.v(nst)

76 for nst in self.T[st]lact]l.keys()))

77 st = random.choice(self.states_list)

78 act = random.choice(self.actions)

79 self.state = next_state

80 self.action = self.exploration_strategy(next_state,
self.Q[next_state],

81 self.visits[next_state],**self.es_kwargs)

82 return self.action

83

84 def q(self, state, action):

85 if state in self.Q and action in self.Q[state]:

86 return self.Q[statel[action]

87 else:

88 return self.Qinit

rIModelLearner.py — (continued)

90 | from rlExamples import Monster_game_env

91 |mon_env = Monster_game_env()

92 |mbl1 = Model_based_reinforcement_learner("model-based(1)",
mon_env.actions, 0.9, updates_per_step=1)

93 |# Simulate(mbll,mon_env).start().go(100000).plot()

94 |mbl1@ = Model_based_reinforcement_learner("model-based(10)",
mon_env.actions, 0.9, updates_per_step=10)

95 |# Simulate(mbl10,mon_env).start().go(100000).plot()

9%
97 | from rlGUI import rlGUI

98 |#gui = rlGUI(mon_env, mbl1)

99

100 | from rlQLearner import test_RL

101 |if __name__ == "__main__":

102 test_RL(Model_based_reinforcement_learner)

Exercise 13.5 If there were only one update per step, the algorithm could be
made simpler and use less space. Explain how. Does it make it more efficient? Is
it worthwhile having more than one update per step for the games implemented
here?

Exercise 13.6 Itis possible to implement the model-based reinforcement learner
by replacing Q, R, T, visits, res_states with a single dictionary that, given a state and
action returns a tuple corresponding to these data structures. Does this make the
algorithm easier to understand? Does this make the algorithm more efficient?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18

13.6. Reinforcement Learning with Features 337

Exercise 13.7 If the states and the actions were mapped into integers, the dictio-
naries could be implemented perhaps more efficiently as arrays. How would the
code need to change? Implement this for the monster game. Is it more efficient?

Exercise 13.8 In random_choice in the updates of select_action, all state-action
pairs have the same chance of being chosen. Does selecting state-action pairs pro-
portionally to the number of times visited work better than what is implemented?
Provide evidence for your answer.

13.6 Reinforcement Learning with Features

To run the demo, in folder “aipython”, load “rlFeatures.py”, and copy
and paste the example queries at the bottom of that file. This assumes
Python 3.

This section covers Q-learning with features, where the Q-function is a linear
function of feature values.

13.6.1 Representing Features

A feature is a real-valued function from state and action. For an environment,
you construct a function that takes a state and an action and returns a list (vec-
tor) of real numbers.

This code only does feature engineering: the feature set is redesigned for
each problem. Deep RL uses deep learning to learn features, turns out to be
trickier to get to work than is generally assumed.

party_features3 and party_features4 return lists of feature values for the
party decision. party_features4 has one extra feature.

rIGameFeature.py — Feature-based Reinforcement Learner

from rlExamples import Monster_game_env
from rlProblem import RL_env

def party_features3(state,action):
return [1, state=="sick"”, action=="party"]

def party_features4(state,action):
return [1, state=="sick"”, action=="party"”, state=="sick” and
action=="party"]

Exercise 13.9 With party_features3 what policies can be discovered? What
policies cannot be represented as

The monster_features defines the vector of feature values for the given
state and action.

riGameFeature.py — (continued)

20 ‘ def monster_features(state,action):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

338

def

https://aipython.org Version 0.9.15 December 23, 2024

13. Reinforcement Learning

nnn

returns the list of feature values for the state-action pair

assert action in Monster_game_env.actions, f"Monster game, unknown
action: {action}”

(x,y,d,p) = state

f1: would go to a monster

f1 = monster_ahead(x,y,action)

f2: would crash into wall

f2 = wall_ahead(x,y,action)

f3: action is towards a prize

f3 = towards_prize(x,y,action,p)

f4:. damaged and action is toward repair station

f4 = towards_repair(x,y,action) if d else @

f5: damaged and towards monster

f5 =1 if d and f1 else 0

f6: damaged

fé =1 if d else @

f7: not damaged

f7 = 1-f6

f8: damaged and prize ahead

f8 =1 if d and f3 else 0

f9: not damaged and prize ahead

f9 =1 if not d and f3 else 0@

features = [1,f1,f2,f3,f4,f5,f6,f7,f8,f9]

the next 20 features are for 5 prize locations

and 4 distances from outside in all directions

for pr in Monster_game_env.prize_locs+[None]:

if p==pr:
features += [x, 4-x, y, 4-y]
else:

features += [0, 0, 0, 0]
fpo4 feature for y when prize is at 0,4
this knows about the wall to the right of the prize
if p==(0,4):
if x==0:
fpo4 =y
elif y<3:
fpo4
else:
fpo4

y

4-y
else:

fpo4 = 0
features.append(fpo4)
return features

monster_ahead(x,y,action):
"""returns 1 if the location expected to get to by doing
action from (x,y) can contain a monster.

nnn

if action == "right" and (x+1,y) in Monster_game_env.monster_locs:

https://aipython.org

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117

13.6. Reinforcement Learning with Features 339

return 1

elif action == "left” and (x-1,y) in Monster_game_env.monster_locs:
return 1

elif action == "up” and (x,y+1) in Monster_game_env.monster_locs:
return 1

elif action == "down"” and (x,y-1) in Monster_game_env.monster_locs:
return 1

else:
return 0

def wall_ahead(x,y,action):
"""returns 1 if there is a wall in the direction of action from (x,y).
This is complicated by the internal walls.

nnn

if action == "right” and (x==Monster_game_env.x_dim-1 or (x,y) in
Monster_game_env.vwalls):
return 1

elif action == "left” and (x==0 or (x-1,y) in Monster_game_env.vwalls):
return 1

elif action == "up" and y==Monster_game_env.y_dim-1:
return 1

elif action == "down" and y==0:
return 1

else:
return @

def towards_prize(x,y,action,p):
"""action goes in the direction of the prize from (x,y)
if p is None:
return 0
elif p==(0,4): # take into account the wall near the top-left prize
if action == "left” and (x>1 or x==1 and y<3):
return 1
elif action == "down” and (x>0 and y>2):
return 1
elif action == "up” and (x==0 or y<2):
return 1
else:
return 0

nnn

else:
px,py = p
if p==(4,4) and x==0:
if (action=="right" and y<3) or (action=="down"” and y>2) or
(action=="up"” and y<2):
return 1
else:
return 0
if (action == "up” and y<py) or (action == "down"” and py<y):
return 1
elif (action == "left"” and px<x) or (action == "right" and x<px):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147

11
12
13
14
15
16
17

340 13. Reinforcement Learning

return 1
else:
return 0

def towards_repair(x,y,action):
"""returns 1 if action is towards the repair station.
if action == "up” and (x>0 and y<4 or x==0 and y<2):
return 1
elif action == "left” and x>1:
return 1
elif action == "right” and x==0 and y<3:
return 1
elif action == "down" and x==0 and y>2:
return 1
else:
return 0

The following uses a simpler set of features. In particular, it only considers
whether the action will most likely result in a monster position or a wall, and
whether the action moves towards the current prize.

rlGameFeature.py — (continued)

def simp_features(state,action):
"""returns a list of feature values for the state-action pair
assert action in Monster_game_env.actions
(x,y,d,p) = state
f1: would go to a monster
f1 = monster_ahead(x,y,action)
f2: would crash into wall
f2 = wall_ahead(x,y,action)
f3: action is towards a prize
f3 = towards_prize(x,y,action,p)
return [1,f1,f2,f3]

13.6.2 Feature-based RL learner

This learns a linear function approximation of the Q-values. It requires the
function get_features that given a state and an action returns a list of values for
all of the features. Each environment requires this function to be provided.

rIFeatures.py — Feature-based Reinforcement Learner

import random

from rlProblem import RL_agent, epsilon_greedy, ucb
from display import Displayable

from utilities import argmaxe, flip

import rlGameFeature

class SARSA_LFA_learner(RL_agent):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

18
19
20

21
22
23
24
25
26

27

28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59

13.6. Reinforcement Learning with Features 341

"""A SARSA with linear function approximation (LFA) learning agent has
def __init__(self, name, actions, discount,
get_features=rlGameFeature.party_features4,
exploration_strategy=epsilon_greedy, es_kwargs={},
step_size=0.01, winit=0):
name is the name of the agent (e.g., in a game)
actions is the set of actions the agent can do
discount is the discount factor
get_features is a function get_features(state,action) -> list of
feature values
exploration_strategy is the exploration function, default
"epsilon_greedy”
es_kwargs is extra keyword arguments of the exploration_strategy
step_size is gradient descent step size
winit is the initial value of the weights

nnn

nnn

RL_agent.__init__(self, actions)

self.name = name

self.discount = discount
self.exploration_strategy = exploration_strategy
self.es_kwargs = es_kwargs

self.get_features = get_features

self.step_size = step_size

self.winit = winit

The initial action is a random action. It remembers the state, and initializes the
data structures.

rIFeatures.py — (continued)

def initial_action(self, state):
""" Returns the initial action; selected at random
Initialize Data Structures
self.action = RL_agent.initial_action(self, state)
self.features = self.get_features(state, self.action)
self.weights = [self.winit for f in self.features]
self.display(2, f"Initial State: {state} Action {self.action}")
self.display(2,"s\ta\tr\ts'\tQ")
return self.action

do takes in the number of steps.

rIFeatures.py — (continued)

def q(self, state,action):
"""returns Q-value of the state and action for current weights

nnn

return dot_product(self.weights, self.get_features(state,action))

def select_action(self, reward, next_state):
"""do num_steps of interaction with the environment

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84

86
87
88
89
90
91
92

93
94

95
96
97
98

99
100

101

342 13. Reinforcement Learning

feature_values = self.get_features(self.state,self.action)

0ldQ = self.q(self.state,self.action)

next_action = self.exploration_strategy(next_state,
{a:self.q(next_state,a)

for a in self.actions}, {3})

nextQ = self.qg(next_state,next_action)
delta = reward + self.discount * nextQ - o0ldQ
for i in range(len(self.weights)):

self.weights[i] += self.step_size * delta * feature_values[i]

self.display(2,self.state, self.action, reward, next_state,
self.q(self.state,self.action), delta, sep='\t')

self.state = next_state

self.action = next_action

return self.action

def show_actions(self,state=None):

"""nrints the value for each action in a state.

This may be useful for debugging.

if state is None:
state = self.state

for next_act in self.actions:
print(next_act,dot_product(self.weights,

self.get_features(state,next_act)))

def dot_product(11,12):
return sum(el*e2 for (el,e2) in zip(11,12))

Test code:

rIFeatures.py — (continued)

from rlProblem import Simulate

from rlExamples import Party_env, Monster_game_env
import rlGameFeature

from r1lGUI import rlGUI

party = Party_env()

pa3 = SARSA_LFA_learner(party.name, party.actions, 0.9,
rlGameFeature.party_features3)

Simulate(pa3,party).start().go(300).plot()

pad4 = SARSA_LFA_learner(party.name, party.actions, 0.9,
rlGameFeature.party_features4)

Simulate(pa4,party).start().go(300).plot()

mon_env = Monster_game_env()

fal = SARSA_LFA_learner("LFA", mon_env.actions, 0.9,
rlGameFeature.monster_features)

Simulate(fal,mon_env).start().go(100000).plot()

fas1 = SARSA_LFA_learner("LFA (simp features)”, mon_env.actions, 0.9,
rlGameFeature.simp_features)

#Simulate(fas1,mon_env).start().go(100000).plot()

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

102

103
104
105
106

13.7. GUI for RL 343

rlGUI(mon_env, SARSA_LFA_learner(mon_env.name, mon_env.actions, 0.9,
rlGameFeature.monster_features))

from rlQLearner import test_RL

n

if __name__ == main

test_RL(SARSA_LFA_learner, es_kwargs={'epsilon':1}) # random exploration

n,

Exercise 13.10 How does the step-size affect performance? Try different step
sizes (e.g., 0.1, 0.001, other sizes in-between). Explain the behavior you observe.
Which step size works best for this example. Explain what evidence you are basing
your prediction on.

Exercise 13.11 Does having extra features always help? Does it sometime help?
Does whether it helps depend on the step size? Give evidence for your claims.

Exercise 13.12 For each of the following first predict, then plot, then explain the
behavior you observed:

(a) SARSA_LFA, Model-based learning (with 1 update per step) and Q-learning
for 10,000 steps 20% exploring followed by 10,000 steps 100% exploiting

(b) SARSA_LFA, model-based learning and Q-learning for

i) 100,000 steps 20% exploring followed by 100,000 steps 100% exploit
ii) 10,000 steps 20% exploring followed by 190,000 steps 100% exploit

(c) Suppose your goal was to have the best accumulated reward after 200,000
steps. You are allowed to change the exploration rate at a fixed number of
steps. For each of the methods, which is the best position to start exploiting
more? Which method is better? What if you wanted to have the best reward
after 10,000 or 1,000 steps?

Based on this evidence, explain when it is preferable to use SARSA _LFA, Model-
based learner, or Q-learning.

Important: you need to run each algorithm more than once. Your explanation
should include the variability as well as the typical behavior.

Exercise 13.13 In the call to self.exploration_strategy, what should the counts
be? (The code above will fail for ucb, for example.) Think about the case where
there are too many states. Suppose we are just learning for a neighborhood of a
current state (e.g., a fixed number of steps away the from the current state); how
could the algorithm be modifies to make sure it has at least explored the close
neighborhood of the current state?

13.7 GUI for RL

This implements an an interactive graphical user interface for reinforcement
learners. It lets the uses choose the actions and visualize the value function
and/or the Q-function. It works by taking over the exploration strategy; when
the agent needs to get an action, it asks the GUI. When the user requests mul-
tiple steps, it calls the original exploration strategy.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

344 13. Reinforcement Learning

18: State: (1, 0) Reward: 0 Sum rewards: -63

0.68

0

1
.
® show g-values left right
ronciog | B 3l AR oo o] 0 o

Figure 13.3: Graphical User Interface for tiny game

Figure shows the GUI for the tiny game (see commented out code at
the end of the file) after a 18 actions by the user. The 6 states are shown in a grid;
each rectangle is a state. Within each state are 4 numbers, corresponding to the
4 actions, that give the Q-value for that state and action. The red arrows corre-
spond to the actions with maximal Q-value for each state. The 4 yellow buttons
are arranged in the same order as the Q-values. The white ellipse shows the
current position of the agent. The user can simulate the agent by clicking on
one of these actions. They can also click on “steps” to simulate 100 steps (in
this case). The check-boxes are used to show the g-values, the policy (the red
arrows) and the visits — the number of times each action has been carried out
in each state (when g-values is not checked). When neither g-values or visits is
checked the value for the state is shown.

Figure[13.4shows the GUI for the monster game after 1000 steps. From the
top line, you can see the agent is at location (4, 2) — shown by the white dot - is
damaged and the goal is at (0,4) — shown by the green dot. It is instructive to
try to control the agent by clicking on the actions on the bottom right: it only
does what is expected 70% of the time.

rlIGUl.py — Reinforcement Learning GUI

11 |import matplotlib.pyplot as plt
12 | from matplotlib.widgets import Button, CheckButtons, TextBox

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32

13.7. GUI for RL

1000: State: (4, 2, True, (0, 4)) Reward: 0.0 Sum rewards: -690.0

0 1 2 3

show g-values

= -
Font{10.0 B show policy 1000 | steps

E} IEI
s »
=}

Figure 13.4: Graphical User Interface for Monster game

from rlProblem import Simulate

class rlGUI(object):
def __init__(self, env, agent):

nnn

nnn

self.env = env

self.agent = agent
self.state = self.env.state
self.x_dim = env.x_dim
self.y_dim = env.y_dim

if 'offsets' in vars(env): # 'offsets' is defined in environment

self.offsets = env.offsets
else: # should be more general

self.offsets = {'right':(0.25,0), 'up':(0,0.25),

'left':(-0.25,0), 'down':(0,-0.25)}

replace the exploration strategy with GUI
self.orig_exp_strategy = self.agent.exploration_strategy
self.agent.exploration_strategy = self.actionFromGUI
self.do_steps = 0
self.quitting = False

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58

59
60
61

62
63

64
65

66
67
68
69
70
71
72
73
74
75
76

346

self.action = None

def go(self):
self.q = self.agent.q
self.v = self.agent.v
try:
self.fig,self.ax = plt.subplots()
plt.subplots_adjust(bottom=0.2)
self.actButtons =

{self.fig.text(0.8+self.offsets[al[@]1*0.4,0.1+self.offsets[al[1]1*0.1,a,
bbox={'boxstyle': 'square', 'color':'yellow', 'ec':'black'},

13. Reinforcement Learning

picker=True):a #, fontsize=fontsize):a

for a in self.env.actions}

self.fig.canvas.mpl_connect('pick_event', self.sel_action)
self.fig.canvas.mpl_connect('close_event', self.window_closed)
self.sim = Simulate(self.agent, self.env)

self.show()
self.sim.start()

self.sim.go(1000000000000) # go forever

except ExitToPython:
print(”"Window closed")

def show(self):

self.qcheck = CheckButtons(plt.axes([0.2,0.05,0.25,0.075]),

non non

["show g-values”, "show policy”,"show

visits”])

self.qcheck.on_clicked(self.show_vals)

self.font_box = TextBox(plt.axes([0.125,0.05,0.05,0.05]),"Font:",

textalignment="center")

self.font_box.on_submit(self.set_font_size)
self.font_box.set_val(str(plt.rcParams['font.size']))
self.step_box = TextBox(plt.axes([0.5,0.05,0.1,0.05]),"",

textalignment="center")
self.step_box.set_val("100")

self.stepsButton = Button(plt.axes([0.6,0.05,0.075,0.05]), "steps”,

color="yellow')

self.stepsButton.on_clicked(self.steps)

#self.exitButton = Button(plt.axes([0.0,0.05,0.05,0.05]), "exit",

color="yellow')
#self.exitButton.on_clicked(self.exit)
self.show_vals(None)

def set_font_size(self, s):

plt.rcParams.update({'font.size': eval(s)})

plt.draw()

def window_closed(self, s):
self.quitting = True

def show_vals(self,event):

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

77
78

79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94
95

96
97
98
99

100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

13.7. GUI for RL

self.ax.cla()

347

self.ax.set_title(f"{self.sim.step}: State: {self.state} Reward:
{self.env.reward} Sum rewards: {self.sim.sum_rewards}")
array = [[self.v(self.env.pos2state((x,y))) for x in

range(self.x_dim)]

for y in range(self.y_dim)]
self.ax.pcolormesh([x-0.5 for x in range(self.x_dim+1)],
[x-0.5 for x in range(self.y_dim+1)],
array, edgecolors='black',cmap="'summer"')

for cmap see

https://matplotlib.org/stable/tutorials/colors/colormaps.html

if self.qcheck.get_status()[1]: # "show policy”
for x in range(self.x_dim):
for y in range(self.y_dim):
state = self.env.pos2state((x,y))
maxv = max(self.agent.q(state,a) for
self.env.actions)
for a in self.env.actions:
xoff, yoff = self.offsets[a]
if self.agent.q(state,a) == maxv:

a in

draw arrow in appropriate direction
self.ax.arrow(x,y,xoff*2, yoffx2,
color="red',width=0.05, head_width=0.2,
length_includes_head=True)

if goal := self.env.state2goal(self.state):
self.ax.add_patch(plt.Circle(goal, 9.1, color=

'lime'))

self.ax.add_patch(plt.Circle(self.env.state2pos(self.state), 0.1,

color='w"))
if self.qcheck.get_status()[@]: # "show g-values”
self.show_qg(event)

elif self.qcheck.get_status()[2] and 'visits' in vars(self.agent):

"show visits”

self.show_visits(event)
else:

self.show_v(event)
self.ax.set_xticks(range(self.x_dim))
self.ax.set_xticklabels(range(self.x_dim))
self.ax.set_yticks(range(self.y_dim))
self.ax.set_yticklabels(range(self.y_dim))
plt.draw()

def sel_action(self,event):

self.action = self.actButtons[event.artist]

def show_v(self,event):

nnn nnn

show values
for x in range(self.x_dim):
for y in range(self.y_dim):

state = self.env.pos2state((x,y))

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

348 13. Reinforcement Learning

120 self.ax.text(x,y,"{val:.2f}".format(val=self.agent.v(state)),ha="'center')

121

122 def show_qg(self,event):

123 """show g-values”""

124 for x in range(self.x_dim):

125 for y in range(self.y_dim):

126 state = self.env.pos2state((x,y))

127 for a in self.env.actions:

128 xoff, yoff = self.offsets[a]

129 self.ax.text(x+xoff,y+yoff,

130 "{val:.2f}".format(val=self.agent.q(state,a)),ha='center"')

131

132 def show_visits(self,event):

133 """show g-values”""

134 for x in range(self.x_dim):

135 for y in range(self.y_dim):

136 state = self.env.pos2state((x,y))

137 for a in self.env.actions:

138 xoff, yoff = self.offsets[a]

139 if state in self.agent.visits and a in

self.agent.visits[state]:

140 num_visits = self.agent.visits[state][a]

141 else:

142 num_visits = 0

143 self.ax.text(x+xoff,y+yoff,

144 str(num_visits),ha='center"')

145

146 def steps(self,event):

147 "do the steps given in step box"

148 num_steps = int(self.step_box.text)

149 if num_steps > 0@:

150 self.do_steps = num_steps-1

151 self.action = self.action_from_orig_exp_strategy()

152

153 def action_from_orig_exp_strategy(self):

154 """returns the action from the original explorations strategy”""

155 visits = self.agent.visits[self.state] if 'visits' in
vars(self.agent) else {}

156 return
self.orig_exp_strategy(self.state,{a:self.agent.q(self.state,a)
for a in self.agent.actions},

157 visits,**self.agent.es_kwargs)

158

159 def actionFromGUI(self, state, *xargs, *xkwargs):

160 """called as the exploration strategy by the RL agent.

161 returns an action, either from the GUI or the original exploration
strategy

162 e

163 self.state = state

164 if self.do_steps > 0: # use the original

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

165
166
167
168
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

197

198

199

200
201

13.7. GUI for RL 349

self.do_steps -= 1
return self.action_from_orig_exp_strategy()
else: # get action from the user

self.show_vals(None)

while self.action == None and not self.quitting: #wait for user
action
plt.pause(0.05) # controls reaction time of GUI

if self.quitting:
raise ExitToPython()

act = self.action

self.action = None

return act

class ExitToPython(Exception):
"""Thrown when window closes.

nnn

pass

from rlExamples import Monster_game_env

from mdpExamples import MDPtiny, Monster_game

from rlQLearner import Q_learner, SARSA

from rlStochasticPolicy import StochasticPIAgent

from rlProblem import Env_from_ProblemDomain, epsilon_greedy, ucb

Choose an Environment
env = Env_from_ProblemDomain(MDPtiny())

env = Env_from_ProblemDomain(Monster_game())

env = Monster_game_env()

Choose an algorithm

gui = rlGUI(env, Q_learner("Q", env.actions, 0.9)); gui.go()

gui = rlGUI(env, SARSA("SARSA", env.actions, 0.9)); gui.go()

gui = rlGUI(env, SARSA("SARSA alpha(k)=k:10/(9+k))", env.actions, 0.9,
alpha_fun=lambda k:10/(9+k))); gui.go()

gui = rlGUI(env, SARSA("SARSA-UCB", env.actions, 0.9,

exploration_strategy = ucb, es_kwargs={'c':0.1})); gui.go()
gui = rlGUI(env, StochasticPIAgent("Q", env.actions, 0.9,
alpha_fun=1lambda k:10/(9+k))); gui.go()

n

if __name__ == "__main_

print("Try: rlGUI(env, Q_learner('Q', env.actions, 0.9)).go()")

n,

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Chapter 14

Multiagent Systems

This chapter considers searching game trees and reinforcement learning for
games.

14.1 Minimax

The following code implements search for two-player, zero-sum, perfect-information
(fully-observable) games. One player only wins when another player loses.
Such games can be modeled with

¢ asingle value (utility) which one agent (the maximizing agent) is trying
maximize and the other agent (the minimizing agent) is trying to mini-
mize

* a game tree where the nodes correspond to state of the game (or the his-
tory of moves)

¢ each node is labelled by the player who controls the next move (the max-
imizing player or the minimizing player)

¢ the children of non-terminal node correspond to all of the actions by the
agent controlling the node

* nodes at the end of the game have no children and are labeled with the
value of the node (e.g., +1 for win, 0 for tie, —1 for loss).

The aim of the minimax searcher is, given a state, to find the optimal (maxi-
mizing or minimizing depending on the agent) move.

351

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49

352 14. Multiagent Systems

14.1.1 Creating a two-player game

masProblem.py — A Multiagent Problem

from display import Displayable

class Node(Displayable):

"""A node in a search tree. It has a

name a string

isMax is True if it is a maximizing node, otherwise it is minimizing
node

children is the list of children

value is what the node evaluates to if it is a leaf.

def __init__(self, name, isMax, value, children):
self.name = name
self.isMax = isMax
self.value = value
self.allchildren = children

def islLeaf(self):
"""returns true of this is a leaf node
return self.allchildren is None

nnn

def children(self):
"""returns the list of all children.
return self.allchildren

nnn

def evaluate(self):
"""returns the evaluation for this node if it is a leaf"""
return self.value

def __repr__(self):
return self.name

The following gives the tree of Figure[14.1](Figure 11.5 of Poole and Mackworthi
[2023]); only the leaf nodes are part of the true; the other values are described
Poole and Mackworth|[2023, Section 14.3.1]. 888 is used as a value for those
nodes without a value in the tree. (If you look at the trace of alpha-beta prun-
ing, 888 never appears).

masProblem.py — (continued)

fig10_5 = Node(”a"”,True,None, [
Node("b",False,None, [
Node("d",True,None, [

Node("h",False,None, [
Node("h1",True,7,None),
Node("h2",True,9,None) 1),

Node("i",False,None, [
Node("i1",True,6,None),
Node("i2",True,888,None)1) 1),

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74

14.1. Minimax 353

| g/@i
RRLARERR R

BRI HiNIEE.

11 12 4

N

Figure 14.1: Example search tree

Node("e",True,None, [
Node("j",False,None, [
Node("j1",True,11,None),
Node("3j2",True,12,None)]),
Node("k",False,None, [
Node("k1",True, 888,None),
Node("k2",True,888,None)1)1) 1),
Node("c",False,None, [
Node("f",True,None, [
Node("1",False,None, [
Node("11",True,5,None),
Node("12",True,888,None)]),
Node("m",False,None, [
Node("m1",True,4,None),
Node("m2",True,888,None)1) 1),
Node("g",True,None, [
Node("n",False,None, [
Node("n1",True, 888,None),
Node("n2",True,888,None)]),
Node("o0",False,None, [
Node("01",True, 888,None),
Node("02",True,888,None)1)1)1 1)

The following is a representation of a magic-sum game, where players take
turns picking a number in the range [1,9], and the first player to have 3 num-
bers that sum to 15 wins. Note that this is a syntactic variant of tic-tac-toe or
naughts and crosses. To see this, consider the numbers on a magic square (Fig-
ure ; 3numbers that add to 15 correspond exactly to the winning positions
of tic-tac-toe played on the magic square.

masProblem.py — (continued)

class Magic_sum(Node):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

108
109
110
111
112
113
114

354 14. Multiagent Systems

61|38
71513
2194

Figure 14.2: Magic Square

def __init__(self, xmove=True, last_move=None,
available=[1,2,3,4,5,6,7,8,9]1, x=[1, o=[1):
"""This is a node in the search for the magic-sum game.
xmove is True if the next move belongs to X.
last_move is the number selected in the last move
available is the list of numbers that are available to be chosen
x is the list of numbers already chosen by x
o is the list of numbers already chosen by o
self.isMax = self.xmove = xmove
self.last_move = last_move
self.available = available
self.x = x
self.o = o
self.allchildren = None #computed on demand
Im = str(last_move)
self.name = "start” if not last_move else "o="+1Im if xmove else
"x="+1m

def children(self):
if self.allchildren is None:
if self.xmove:
self.allchildren = [
Magic_sum(xmove = not self.xmove,
last_move = sel,
available = [e for e in self.available if e is

not sell],
x = self.x+[sel],
o = self.o)

for sel in self.available]
else:
self.allchildren = [

Magic_sum(xmove = not self.xmove,
last_move = sel,
available = [e for e in self.available if e is

not sel],
x = self.x,
o = self.o+[sell])
for sel in self.available]
return self.allchildren

def isleaf(self):
"""A leaf has no numbers available or is a win for one of the

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135
136
137

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

14.1. Minimax 355

players.

We only need to check for a win for o if it is currently x's turn,
and only check for a win for x if it is o's turn (otherwise it would
have been a win earlier).
return (self.available == [] or

(sum_to_15(self.last_move,self.o)

if self.xmove

else sum_to_15(self.last_move,self.x)))

def evaluate(self):
if self.xmove and sum_to_15(self.last_move,self.o):
return -1
elif not self.xmove and sum_to_15(self.last_move,self.x):
return 1
else:
return 0

def sum_to_15(last,selected):
"""is true if last, together with two other elements of selected sum to
15.
return any(last+atb == 15
for a in selected if a != last

for b in selected if b != last and b != a)

14.1.2 Minimax and a-f Pruning
This is a naive depth-first minimax algorithm that searches the whole tree:

masMiniMax.py — Minimax search with alpha-beta pruning
def minimax(node,depth):
"""returns the value of node, and a best path for the agents

nnn

if node.islLeaf():
return node.evaluate(),None
elif node.isMax:
max_score = float("-inf")
max_path = None
for C in node.children():
score,path = minimax(C,depth+1)
if score > max_score:
max_score = score
max_path = C.name,path
return max_score,max_path
else:
min_score = float("inf")
min_path = None
for C in node.children():
score,path = minimax(C,depth+1)
if score < min_score:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

31
32
33

35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74

356 14. Multiagent Systems

min_score = score
min_path = C.name,path
return min_score,min_path

The following is a depth-first minimax with a-B pruning. It returns the
value for a node as well as a best path for the agents.

masMiniMax.py — (continued)

def minimax_alpha_beta(node, alpha, beta, depth=0):
"""node is a Node,
alpha and beta are cutoffs
depth is the depth on node (for indentation in printing)
returns value, path
where path is a sequence of nodes that results in the value
node.display(2,"” "*depth, f"minimax_alpha_beta({node.name}, {alpha},
{beta})"™)
best=None # only used if it will be pruned
if node.islLeaf():
node.display(2,"” "*depth, f"{node} leaf value {node.evaluate()}")
return node.evaluate(),None
elif node.isMax:
for C in node.children():
score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
if score >= beta: # beta pruning
node.display(2,"” "*depth, f"{node} pruned {beta=}, {C=}")
return score, None
if score > alpha:
alpha = score
best = C.name, path
node.display(2,"” "*depth, f"{node} returning max {alpha=}, {best=3}")
return alpha,best
else:
for C in node.children():
score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
if score <= alpha: # alpha pruning
node.display(2,"” "*depth, f"{node} pruned {alpha=}, {C=}")
return score, None
if score < beta:
beta=score
best = C.name,path
node.display(2,"” "*depth, f"{node} returning min {beta=}, {best=}")
return beta,best

Testing:

masMiniMax.py — (continued)

from masProblem import figl1@_5, Magic_sum, Node

Node.max_display_level=2 # print detailed trace
minimax_alpha_beta(fig10_5, -9999, 9999,0)

minimax_alpha_beta(Magic_sum(), -9999, 9999,0)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

75
76
77
78

79

11
12
13
14
15
16
17

18
19
20
21

14.2. Multiagent Learning 357

#To test much time alpha-beta pruning can save over minimax:

import timeit

timeit.Timer("minimax(Magic_sum(),@)",setup="from
minimax, Magic_sum").timeit(number=1)

timeit.Timer("minimax_alpha_beta(Magic_sum(), -9999, 9999,0)",
setup="from __main__ import minimax_alpha_beta,
Magic_sum”).timeit(number=1)

_main__ import

Exercise 14.1 In the magic-sum game, a state is represented as lists of moves.
The same state could be reached by more than one sequence of moves. Change
the representation of the game and/or the search procedures to recognize when
the value of a state has already been computed. How much does this improve the
search?

Exercise 14.2 There are symmetries in tic-tac toe, such as rotation and reflec-
tion. How can the representation and/or the algorithm be changed to recognize
symmetries? How much difference does it make?

14.2 Multiagent Learning

The next code is for multiple agents that learn when interacting with other
agents. The main difference from the simulator of the last chapter is that the
games take actions from all the agents and provide a separate reward to each
agent. Any of the reinforcement learning agents from the last chapter can be
used.

14.2.1 Simulating Multiagent Interaction with an Environment

A game has a name, a list of player roles (which are strings for printing), a list
of lists of actions (actions[i][j] is the jth action for agent i), a list of states,
and an initial state. The default is to have a single state, and the initial state is
a randomly selected state.

masLearn.py — Multiagent learning

import random

from display import Displayable
import matplotlib.pyplot as plt
from rlProblem import RL_agent

class Game(Displayable):
def __init__(self, name, players, actions, states=['s0Q'],
initial_state=None):
self.name = name
self.players = players # list of roles (strings) of the players
self.num_players = len(players)
self.actions = actions # action[i] is list of actions for agent i

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

22

23
24
25
26

28
29
30
31

32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54

55
56
57
58
59
60
61

358 14. Multiagent Systems

self.states = states # list of environment states; default single
state

if initial_state is None:
self.initial_state = random.choice(states)

else:
self.initial_state = initial_state

The simulation for a game passes the joint action from all the agents to the
environment, which returns a tuple of rewards — one for each agent — and the
next state.

masLearn.py — (continued)

def sim(self, ag_types, discount=0):
"""returns a simulation using default values for agent types
(This is a simple interface to SimulateGame)
ag_types is a list of agent functions (one for each player in the
game)
The default is for one-off games where discount=0
return SimulateGame(self,
Lag_types[i](ag_types[i].__name__,
self.actions[i], discount)
for i in range(self.num_players)])

class SimulateGame(Displayable):
"""A simulation of a game.
(This is not subclass of a game, as a game can have multiple games.)
def __init__(self, game, agents):
""" Simulates game
agents is a list of agents, one for each player in the game
#self.max_display_level = 3
self.game = game
self.agents = agents
Collect Statistics:
self.action_counts = [{act:@ for act in game.actions[i]} for i in
range(game.num_players)]
self.reward_sum = [@ for i in range(game.num_players)]
self.dist = {}
self.dist_history = []
self.actions = tuple(ag.initial_action(game.initial_state) for ag
in self.agents)
self.num_steps = @

def go(self, steps):
for i in range(steps):
self.num_steps += 1
(rewards, state) = self.game.play(self.actions)
self.display(3, f"In go {rewards=}, {state=3}")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

62

63
64

65
66
67

68
69
70

71
72
73
74
75
76

14.2. Multiagent Learning

Probability kicker does right

Soccer Gaol Kick Game

1.0 { —— (StochasticPIAgent, StochasticPIAgent)
(Q_learner, Q_learner)
—— (Q_learner, StochasticPIAgent)

0.8 1

0.6 1

0.4 1

0.2 1

0.0 A

0.0 0.2 0.4 0.6 0.8 1.0
Probability goalkeeper does right

Figure 14.3: Dynamics of three runs of SoccerGame

self.reward_sum = [self.reward_sum[i]+rewards[i] for i in
range(len(rewards))]
self.actions = tuple(agent.select_action(reward, state)
for (agent,reward) in
zip(self.agents,rewards))
for i in range(self.game.num_players):
self.action_counts[iJ[self.actions[i]] += 1
self.dist_history.append([{a:i/self.num_steps for (a,i) in
elt.items()}
for elt in self.action_counts])
self.display(1,"Scores:", ' '.join(
f"{self.agents[i].name} average
reward={self.reward_sum[i]/self.num_steps}"
for i in range(self.game.num_players)))
self.display(1,"Distributions:"”,
" '.join(str({a:self.dist_history[-1]1[i][al

/sum(self.dist_history[-1]1[i].values())

for a in self.game.actions[i]})
for i in range(self.game.num_players)))

359

The plot shows how the empirical distributions of two actions by two agents
changes as the learning continues.

Figure shows the plot of 3 runs. The first (blue) run, where both agents
are running stochastic policy iteration, starts with the goalkeeper going left

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99

101
102
103
104
105
106
107
108

360 14. Multiagent Systems

and the kicker going right; it ends with both probabilities around 0.35. The
second (orange) run, where both agents are doing Q-learning, starts with the
goalkeeper going right and the kicker going left; it ends with empirical proba-
bilities of 0.24 for the goalkeeper going right and 0.36 for the kicker going right.
The third (green) run, where the goalkeeper is doing Q-learning and the kicker
is doing stochastic policy iteration, starts both players going left; it ends with
empirical probabilities of 0.41 for the goalkeeper going right and 0.46 for the
kicker going right. (You can tell the start as the empirical distribution starts
with 0 or 1 probabilities, and moves quickly initially.) This figure is generated
using the commented out code at the end of masLearn. py.

masLearn.py — (continued)

def plot_dynamics(self, x_ag=0, y_ag=1, x_action=0, y_action=0):
""" plot how the empirical probabilities vary
x_ag index of the agent on the x-axis
y_ag index of the agent on the y-axis
x_action index of the action plotted for x_ag
y_action index of the action plotted for y_ag
plt.ion() # make it interactive
plt.title(self.game.name)
x_act = self.game.actions[x_ag]l[x_action]
y_act = self.game.actions[y_aglly_action]
plt.xlabel(f"Probability {self.game.players[x_agl} does
f"{self.agents[x_ag]l.actions[x_action]}")
plt.ylabel (f"Probability {self.game.players[y_ag]} does
f"{self.agents[y_ag].actions[y_action]}")
plt.plot([self.dist_history[il[x_agllx_act]
for i in range(len(self.dist_history))],
[self.dist_history[i][y_aglly_act]
for i in range(len(self.dist_history))],
label = f"({self.agents[x_ag].name},
{self.agents[y_ag].name})")
plt.legend()
plt.show()

n

n

14.2.2 Example Games
The following are games from |Poole and Mackworth|[2023].

masLearn.py — (continued)

class ShoppingGame (Game):
def __init__(self):
Game.__init__(self, "Shopping Game",
['football-preferrer', 'shopping-preferrer'], #players
[['shopping', 'football']]x2 # actions
)

def play(self, actions):

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

14.2. Multiagent Learning 361
"""Given (actionl,action2) returns (resulting_state, (rewardl,
reward2))
return ({('football', 'football'): (2, 1),
('football', 'shopping'): (0, 0),
('shopping', 'football'): (@, @),
('shopping', 'shopping'): (1, 2)
}actions], 's')
class SoccerGame(Game):
def __init__(self):
Game.__init__(self, "Soccer Gaol Kick Game",
['goalkeeper', 'kicker'], # players
[['right', 'left']]*2 # actions
)
def play(self, actions):
"""Given (actionl,action2) returns (resulting_state, (rewardl,
reward2))
resulting state is 's'
return ({('left', 'left'): (0.6, 0.4),
('left', 'right'): (0.3, 0.7),
('right', 'left'): (0.2, 0.8),
('right', 'right'): (0.9,0.1)
}actions], 's'")
class GameShow(Game):
def __init__(self):
Game.__init__(self, "Game Show (prisoners dilemma)",
['Agent 1', 'Agent 2'], # players
[['takes', 'gives']]*2 # actions
)
def play(self, actions):
return ({('takes', 'takes'): (1, 1),
('takes', 'gives'): (11, 0),
('gives', 'takes'): (o, 11),
('gives', 'gives'): (10, 10)
}actions], 's')
class UniqueNEGameExample (Game):
def __init__(self):
Game.__init__(self, "3x3 Unique NE Game Example”,
['agent 1', 'agent 2'], # players
[['al', 'b1', 'c1']1,['d2', 'f2'1]
)
def play(self, actions):
return ({('al', 'd2'): (3, 5),
https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

362 14. Multiagent Systems

157 ('al', 'e2'): (5, 1,
158 (tal', 'f2"): (1, 2),
159 ('b1', 'd2"): (1, 1),
160 ('b1", 'e2'): (2, 9),
161 ('b1", 'f2'): (6, 4),
162 ('c1', 'd2"): (2, 6),
163 ('cl', 'e2"): (4, 1),
164 ('c1', 'f2'): (0, 8)
165 }actions], 's')

14.2.3 Testing Games and Environments

masLearn.py — (continued)

167 |# Choose a game:
168 |# gm = ShoppingGame()

169 |# gm = SoccerGame()
170 |# gm = GameShow()
171 |# gm = UniqueNEGameExample()

172
173 | from rlQLearner import Q_learner

174 | from rlProblem import RL_agent

175 | from rlStochasticPolicy import StochasticPIAgent

176 Choose one of the combinations of learners:

177 sm = gm.sim([StochasticPIAgent, StochasticPIAgent]); sm.go(10000)
178 sm = gm.sim([Q_learner, Q_learner]); sm.go(10000)

179 sm = gm.sim([Q_learner, StochasticPIAgent]); sm.go(10000)

180 sm = gm.sim([StochasticPIAgent, Q_learner]); sm.go(10000)

181
182 |# sm.plot_dynamics()

HOoH OH O H

Exercise 14.3 Consider a pair of controllers for a games (try multiple controllers
and games, including the soccer game). Does the empirical distribution represent
a Nash equilibrium? Would either agent be better off if they played a Nash equi-
librium instead of the empirical distribution? [10000 steps might not be enough
for the algorithm to converge.]

Exercise 14.4 Try the Game Show (prisoner’s dilemma) with two StochasticPIAgent
agents and alpha_fun=lambda k:0.1, and also with other values of k, including
0.01. Do different values of k work qualitatively differently? Explain why. Is one
better? Try other games and other algorithms.

Exercise 14.5 Consider the alternative ways to implement stochastic policy iter-
ation of Exercise [13.4l

(a) What value(s) of c converge for the soccer game? Explain your results.

(b) Suggest another method that works well for the soccer game, the other games
and other RL environments.

Exercise 14.6 For the soccer game, how can a Q_learner be regularly beaten?
Assume that the random number generator is secret. (Hint: can you predict what

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

14.2. Multiagent Learning 363

it will do?) What happens when it is played against an adversary that knows how
it learns? What happens if two of these agents are played against each other? Can
a StochasticPIAgent be defeated in the same way?

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23

Chapter 15

Individuals and Relations

Here we implement top-down proofs for Datalog and logic programming. This
is much less efficient than Prolog, which is typically implemented by compiling
to an abstract machine. If you want to do serious work, we suggest using
Prolog; SWI Prolog (https://www.swi-prolog.org) is good.

15.1 Representing Datalog and Logic Programs

The following extends the knowledge bases of Chapter [5| to include logical
variables. In that chapter, atoms did not have structure and were represented
as strings. Here atoms can have arguments including variables (defined below)
and constants (represented by strings).

Function symbols have the same representation as atoms. To make uni-
fication simpler and to allow treating clauses as data, Func is defined as an
abbreviation for Atom.

logicRelation.py — Datalog and Logic Programs

from display import Displayable
import logicProblem

class Var(Displayable):
"""A logical variable
def __init__(self, name):

name
self.name = name

nnn

def __str__(self):
return self.name
_repr = __str_

365

https://www.swi-prolog.org

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

41
42
43
44
45
46
47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

366 15. Individuals and Relations

def __eq__(self, other):

return isinstance(other,Var) and self.name == other.name
def __hash__(self):

return hash(self.name)

class Atom(object):
"""An atom"""
def __init__(self, name, args):
self.name = name
self.args = args

def __str__(self):
return f"{self.name}({', '.join(str(a) for a in self.args)})"
__repr__ = __str__

Func = Atom # same syntax is used for function symbols

The following extends Clause of Section 5.1 to include also a set of logical vari-
ables in the clause. It also allows for atoms that are strings (as in Chapter [9)
and makes them into atoms.

logicRelation.py — (continued)

class Clause(logicProblem.Clause):
next_index=0
def __init__(self, head, *args, **nargs):
if not isinstance(head, Atom):
head = Atom(head)
logicProblem.Clause.__init__(self, head, =*args, *xnargs)
self.logical_variables = log_vars([self.head,self.body],set())

def rename(self):

"""create a unique copy of the clause
if self.logical_variables:

sub = {v:Var(f"{v.name}_{Clause.next_index}") for v in

self.logical_variables}

Clause.next_index += 1

return Clause(apply(self.head,sub),apply(self.body,sub))
else:

return self

nnn

def log_vars(exp, vs):

"""the union the logical variables in exp and the set vs
if isinstance(exp,Var):

return {exp}|vs
elif isinstance(exp,Atom):

return log_vars(exp.name, log_vars(exp.args, vs))
elif isinstance(exp, (list, tuple)):

for e in exp:

vs = log_vars(e, vs)

return vs

nnn

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

87
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

15.2. Unification 367

15.2 Unification

The unification algorithm is very close to the pseudocode of Section 15.5.3 of
Poole and Mackworth| [2023].

logicRelation.py — (continued)

unifdisp = Var(None) # for display

def unify(t1,t2):

e = [(t1,t2)]
s = {} # empty dictionary
while e:

(a,b) = e.pop()
unifdisp.display(2,f"unifying{(a,b)}, e={e},s={s}")
if a != b:
if isinstance(a,Var):
e = apply(e,{a:b})
s = apply(s,{a:b})
sfal=b
elif isinstance(b,Var):
e = apply(e,{b:a})
s = apply(s,{b:a})
s[b]=a
elif isinstance(a,Atom) and isinstance(b,Atom) and
a.name==b.name and len(a.args)==len(b.args):
e += zip(a.args,b.args)
elif isinstance(a, (list,tuple)) and isinstance(b, (list,tuple))
and len(a)==len(b):
e += zip(a,b)
else:
return False

return s

def apply(e,sub):
"""e is an expression
sub is a {var:val} dictionary
returns e with all occurrence of var replaces with val"""
if isinstance(e,Var) and e in sub:
return sub[e]
if isinstance(e,Atom):
return Atom(e.name, apply(e.args,sub))
if isinstance(e,list):
return [apply(a,sub) for a in e]
if isinstance(e,tuple):
return tuple(apply(a,sub) for a in e)
if isinstance(e,dict):
return {k:apply(v,sub) for (k,v) in e.items()}
else:
return e

Test cases:

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

111
112
113
114
115
116
117
118
119

121
122
123
124
125
126
127
128
129
130

11
12
13
14
15
16
17
18
19

21
22
23

368 15. Individuals and Relations

logicRelation.py — (continued)
Test cases:

unifdisp.max_display_level = 2 # show trace
el = Atom('p',[Var('X"),Var('Y"),Var('Y')D)

e2 = Atom('p',['a',Var('Z'),'b'])

apply(el,{Var('Y'):'b'})

unify(el,e2)

e3 = Atom('p',['a',Var('Y"),Var('Y')]D)

e4 = Atom('p',[Var('Z2"),vVar('Z2'),'b'])

unify(e3,e4d)

15.3 Knowledge Bases

The following modifies KB of Section [5.1|so that clause indexing is only on the
predicate symbol of the head of clauses.

logicRelation.py — (continued)

class KB(logicProblem.KB):
"""A first-order knowledge base.
only the indexing is changed to index on name of the head."""

def add_clause(self, c):
"""Add clause ¢ to clause dictionary
if c.head.name in self.atom_to_clauses:
self.atom_to_clauses[c.head.name].append(c)
else:
self.atom_to_clauses[c.head.name] = [c]

nnn

simp_KB is the simple knowledge base of Figure 15.1 of |Poole and Mackworth
[2023].

relnExamples.py — Relational Knowledge Base Example

from logicRelation import Var, Atom, Clause, KB

simp_KB = KB(L[
Clause(Atom('in',['kim','r123'1)),
Clause(Atom('part_of',['r123','cs_building'])),
Clause(Atom('in',[Var('X"),Var('Y') D),
[Atom('part_of',[Var('Z'),Var('Y')]),
Atom('in',[Var('X'),Var('Z'")DD
D

elect_KB is the relational version of the knowledge base for the electrical sys-
tem of a house, as described in Example 15.11 of Poole and Mackworth/[2023]].

relnExamples.py — (continued)

define abbreviations to make the clauses more readable:
def 1lit(x): return Atom('lit',[x]1)
def light(x): return Atom('light',[x])

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

15.3. Knowledge Bases

def
def
def
def
def

L =
W =

ok(x): return Atom('ok',[x])

live(x): return Atom('live',[x])

connected_to(x,y): return Atom('connected_to',[x,y])
up(x): return Atom('up',[x])

down(x): return Atom('down',[x])

Var('L")
Var('W')

W1 = Var('W1')

elect_KB = KB([

1it(L) is true if light L is 1lit.
Clause(lit(L),

[light(L),

ok(L),

live(L)D,

live(W) is true if W is live (i.e., current will flow through it)
Clause(live(W),

[connected_to(W,W1),

live(W) D),

Clause(live('outside')),

light(L) is true if L is a light
Clause(light('11")),
Clause(light('12')),

connected_to(Wo,W1) is true if W@ is connected to W1 such that
current will flow from W1 to Wo.

Clause(connected_to('11"','w@")),
Clause(connected_to('w@', 'wl1'),

[up('s2'), ok('s2')1),
Clause(connected_to('w@', 'w2"'),

[down('s2'), ok('s2')D),
Clause(connected_to('wl','w3"),

[up('s1'), ok('s1')1),
Clause(connected_to('w2', 'w3"'),

[down('s1'), ok('s1')1),
Clause(connected_to('12','w4")),
Clause(connected_to('w4','w3"),

[up('s3'), ok('s3")D),
Clause(connected_to('p1', 'w3")),
Clause(connected_to('w3','w5"),

[ok('cb1')1),
Clause(connected_to('p2','w6")),
Clause(connected_to('w6', 'w5"),

[ok('cb2')1),
Clause(connected_to('w5', 'outside'),

369

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

74
75
76
77
78
79
80
81
82
83
84

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155

370 15. Individuals and Relations

[ok('outside_connection')]),

up(S) is true if switch S is up

down(S) is true if switch S is down
Clause(down('s1")),

Clause(up('s2')),

Clause(up('s3')),

ok(L) is true if K is working. Everything is ok:
Clause(ok (L)),
D

15.4 Top-down Proof Procedure

The top-down proof procedure is the one defined in Section 15.5.4 of Poole and
Mackworth! [2023] and shown in Figure 15.5. It is like prove defined in Section
It implements the iterator interface so that answers can be generated one
at a time (or put in a list), and returns answers. To implement “choose” it loops
over all alternatives and yields (returns one element at a time) the successful
proofs.

logicRelation.py — (continued)

def ask(self, query):
"""self is the current KB
query is a list of atoms to be proved
generates {variable:value} dictionary”"""
gvars = list(log_vars(query, set()))
for ans in self.prove(qvars, query):
yield {x:v for (x,v) in zip(qvars,ans)}

def ask_all(self, query):
"""returns a list of all answers to the query given kb"""
return list(self.ask(query))

def ask_one(self, query):
"""returns an answer to the query given kb or None of there are no
answers”"""
for ans in self.ask(query):

return ans

def prove(self, ans, ans_body, indent=""):
"""enumerates the proofs for ans_body
ans_body is a list of atoms to be proved
ans is the list of values of the query variables
self.display(2,indent,f"(yes({ans}) <-"," & ".join(str(a) for a in
ans_body))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

156
157
158
159
160
161

162
163
164
165
166
167

168
169
170

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

86
87
88
89
90
91
92
93
94
95
96
97

15.4. Top-down Proof Procedure 371

if ans_body==[1]:
yield ans
else:
selected, remaining = self.select_atom(ans_body)
if self.built_in(selected):
yield from self.eval_built_in(ans, selected, remaining,
indent)
else:
for chosen_clause in self.atom_to_clauses[selected.name]:
clause = chosen_clause.rename() # rename variables
sub = unify(selected, clause.head)
if sub is not False:
self.display(3,indent, "KB.prove: selected=",
selected, "clause=", clause, "sub=",sub)
resans = apply(ans,sub)
new_ans_body = apply(clause.body+remaining, sub)
yield from self.prove(resans, new_ans_body, indent+”

n)

def select_atom(self,lst):
"""given list of atoms, return (selected atom, remaining atoms)

nnn

return 1st[0],1st[1:]

def built_in(self,atom):
return atom.name in ['1t','triple']

def eval_built_in(self,ans, selected, remaining, indent):

if selected.name == '1t': # less than
[al,a2] = selected.args
if a1l < a2:
yield from self.prove(ans, remaining, indent+" ")
if selected.name == 'triple': # use triple store (AIFCA Ch 16)

yield from self.eval_triple(ans, selected, remaining, indent)

The unit test run when loading is the query in(A, B), from simp_KB. It should
have two answers.

relnExamples.py — (continued)

+H

Example Queries:
simp_KB.max_display_level = 2 # show trace
ask_all(simp_KB, [Atom('in',[Var('A'),Var('B')DD)

+*

>
1

Var('A")
Var('B")

w
1

def test_ask_all(kb=simp_KB,
query=[Atom('in',[A,B1)1,
res=[{ A:'kim',B:'r123'3}, {A:'kim',B: 'cs_building'}1):
ans= kb.ask_all(query)
assert ans == res, f"ask_all({query}) gave answer {ans}"

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

188
189
190
191

372

print("ask_all: Passed unit test")

n

if __name__ == main_

test_ask_all()

",

elect_KB.max_display_level = 2 # show trace
elect_KB.ask_all([light('11')])
elect_KB.ask_all([light('16')1)
elect_KB.ask_all(fup(Var('X'))1)
elect_KB.ask_all([connected_to('w@',W)1)
elect_KB.ask_all([connected_to('wl',W)])
elect_KB.ask_all([connected_to(W, 'w3')])
elect_KB.ask_all([connected_to(W1,W)1)
elect_KB.ask_all([live('w6')1)
elect_KB.ask_all([live('p1')1)
elect_KB.ask_all([Atom('1lit',[L1)])

HOoH H H HFHFHFHF HE H OH OH

elect_KB.ask_all([live(L)1)

15. Individuals and Relations

elect_KB.ask_all([Atom('1lit',['12']), live('p1')1)

Exercise 15.1 Implement ask-the-user similar to Section Augment this by
allowing the user to specify which instances satisfy an atom. For example, by
asking the user “for what X is w1 connected to X?”; or perhaps in a more user

friendly way:.

15.5 Logic Program Example

The following is an append program and the query of Example 15.30 of Poole

and Mackworth/[2023].

append(nil,W,W).
append(c(A,X),Y,c(A,Z)) <-
append(X,Y,Z).
The term c(A, X) is represented using Atom
In Prolog syntax:

append(nil,W,W).
append([A|X],Y,[A|Z]) :-
append(X,Y,Z).

The value if 1stis [1,1i,s,t]. The query is
? append(F,[L],[1,1i,s,t]).

We first define some constants and functions to make it more readable.

A = Var('A")
F =Var('F")
L =var('L")
W = Var('W")

https://aipython.org Version 0.9.15

logicRelation.py — (continued)

December 23, 2024

https://aipython.org

15.5. Logic Program Example 373

192 | X = Var('X")
193 |Y = Var('Y")
194 |Z = Var('Z")

195 |def cons(h,t): return Atom('cons',[h,t])
196 | def append(a,b,c): return Atom('append',[a,b,c])

197
198 | app_KB = KB([

199 Clause(append('nil' ,W,W)),

200 Clause(append(cons(A,X), Y,cons(A,Z)),
201 [append(X,Y,Z)1)

202 1

203

204

205 |1st = cons('l',cons('i',cons('s',cons('t','nil'))))

206 |# app_KB.max_display_level = 2 #show derivation

207 | #app_KB.ask_all([append(F,cons(A, 'nil'), 1st)1)

208 |# Think about the expected answer before trying:

209 |#app_KB.ask_all([append(X, Y, 1st)])

210 | #app_KB.ask_all([append(lst, 1st, L), append(X, cons('s',Y), L)1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22

Chapter 16

Knowledge Graphs and
Ontologies

16.1 Triple Store

A triple store provides efficient indexing for triples. For any combination of
the subject-verb-object being provided or not, it can efficiently retrieve the cor-
responding triples. This should be comparable in speed to commercial triple
stores, but would probably handle fewer triples, as it is not optimized for space.
It also have fewer bells and whistles (e.g., ways to visualize triples and traverse
the graph).

A triple store implements an index that covers all cases of where the subject,
verb, or object are provided or not. The unspecified parts are given using Q
(with value "?’). Thus, for example, index[(Q,vrb,Q)] is the list of triples with
verb vrb. index[(sub,Q,obj) is the list of triples with subject sub and object
obj.

knowledgeGraph.py — Knowledge graph triple store

from display import Displayable

class TripleStore(Displayable):
Q = '?" # query position

def __init__(self):
self.index = {3}

def add(self, triple):
(sb,vb,ob) = triple
Q = self.Q # make it easier to read
add_to_index(self.index, (Q,Q,Q), triple)

375

23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59

376 16. Knowledge Graphs and Ontologies

add_to_index(self.index, (Q,Q,ob), triple)
add_to_index(self.index, (Q,vb,Q), triple)
add_to_index(self.index, (Q,vb,ob), triple)
add_to_index(self.index, (sb,Q,Q), triple)
add_to_index(self.index, (sb,Q,ob), triple)
add_to_index(self.index, (sb,vb,Q), triple)
add_to_index(self.index, triple, triple)

def __len__(self):
"""number of triples in the triple store
return len(self.index[(Q,Q,Q)1)

nnn

The lookup method returns a list of triples that match a pattern. The pat-
tern is a triple of the form (i,], k) where each of i, j, and k is either “Q” or a
given value; specifying whether the subject, verb, and object are provided in
the query or not. lookup((Q,Q,Q)) returns all triples. lookup((s,v,0)) can be
used to check whether the triple (s,v,0) is in the triple store; it returns [] if
the triple is not in the knowledge graph, and [(s,v,0)] if it is.

knowledgeGraph.py — (continued)

def lookup(self, query):
"""nattern is a triple of the form (i, j,k) where
each i, j, k is either Q or a value for the
subject, verb and object respectively.
returns all triples with the specified non-Q vars in corresponding
position
if query in self.index:
return self.index[query]
else:
return []

def add_to_index(dict, key, value):
if key in dict:
dictl[key].append(value)
else:
dict[key] = [valuel]

Here is a simple test triple store. In Wikidata Q262802 denotes the football
(soccer) player Christine Sinclair, P27 is the country of citizenship, and Q16 is
Canada.

knowledgeGraph.py — (continued)

test cases:

sts = TripleStore() # simple triple store

Q = TripleStore.Q # makes it easier to read

sts.add(('/entity/Q262802"', 'http://schema.org/name',"Christine Sinclair"))
sts.add(('/entity/Q262802', '/prop/direct/P27','/entity/Q16'))
sts.add(('/entity/Q16', 'http://schema.org/name', "Canada"))

sts.lookup(('/entity/Q262802',Q,Q))

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

60
61
62
63
64
65
66

67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95

96

16.1. Triple Store 377

sts.lookup((Q, "http://schema.org/name',Q))

sts.lookup((Q, "http://schema.org/name',"Canada"))
sts.lookup(('/entity/Q16', 'http://schema.org/name', "Canada"))
sts.lookup(('/entity/Q262802', 'http://schema.org/name', "Canada"))
sts.lookup((Q,0Q,Q))

H o H O H

def test_kg(kg=sts, g=('/entity/Q262802',Q,Q),
res=[('/entity/Q262802', 'http://schema.org/name',"Christine
Sinclair”), ('/entity/Q262802', '/prop/direct/P27','/entity/Q16')1):
"""Knowledge graph unit test""”
ans = kg.lookup(q)
assert res==ans, f'"test_kg answer {ans}"
print("knowledge graph unit test passed”)

if __name__ == "__main__":
test_kg()

To read rdf files, you can use rdflib (https://rdflib.readthedocs.io/en/
stable/).

The default in load_file is to include only English names; multiple lan-
guages can be included in the list. If the language restriction is None, all tuples
are included. Converting to strings, as done here, loses information, e.g., the
language associated with the literals. If you don’t want to lose information,
you can use rdflib objects, by omitting str in the call to ts.add.

knowledgeGraph.py — (continued)

before using do:
pip install rdflib

def load_file(ts, filename, language_restriction=['en']):
import rdflib
g = rdflib.Graph()
g.parse(filename)
for (s,v,0) in g:
if language_restriction and isinstance(o,rdflib.term.Literal) and
o._language and o._language not in language_restriction:
pass
else:
ts.add((str(s),str(v),str(o)))
print(f"{len(g)} triples read. Triple store has {len(ts)} triples.")

TripleStore.load_file = load_file

##t## Test cases #i#t##

ts = TripleStore()

#ts.load_file('http://www.wikidata.org/wiki/Special:EntityData/Q262802.nt")

262802 ='http://www.wikidata.org/entity/Q262802'

#res=ts.lookup((q262802, 'http://www.wikidata.org/prop/P27',Q)) # country
of citizenship

The attributes of the object in the first answer to the above query:

https://aipython.org Version 0.9.15 December 23, 2024

https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/
https://aipython.org

97
98

99

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28

29
30

31
32
33
34

378 16. Knowledge Graphs and Ontologies

#ts.lookup((res[0]1[2],Q,0Q))

#ts.lookup((gq262802, 'http://www.wikidata.org/prop/P54',Q)) # member of
sports team

#ts.lookup((g262802, 'http://schema.org/name',Q))

16.2 Integrating Datalog and Triple Store

The following extends the definite clause reasoner in the previous chapter to in-
clude a built-in “triple” predicate (an atom with name “triple” and three argu-
ments). The instances of this predicate are retrieved from the triple store. This

is a simplified version of what can be done with the semweb library of SWI Pro-
log (https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/
semweb . html%27). For anything serious, we suggest you use that. Note that the
semweb library uses “rdf” as the predicate name, and Poole and Mackworth
[2023] uses “prop” in Section 16.1.3 for the same predicate as “triple”.

knowledgeReasoning.py — Integrating Datalog and triple store
from logicRelation import Var, Atom, Clause, KB, unify, apply
from knowledgeGraph import TripleStore, sts

import random

class KBT(KB):
def __init__(self, triplestore, statements=[]):
self.triplestore = triplestore
KB.__init__(self, statements)

def eval_triple(self, ans, selected, remaining, indent):
query = selected.args
Q = self.triplestore.Q
pattern = tuple(Q if isinstance(e,Var) else e for e in query)
retrieved = self.triplestore.lookup(pattern)
self.display(3,indent,"eval_triple:
query=",query, "pattern=",pattern, "retrieved=",retrieved)
for tr in random.sample(retrieved,len(retrieved)):
sub = unify(tr, query)
self.display(3,indent, "KB.prove:
selected=",selected, "triple=",tr, "sub=",sub)
if sub is not False:
yield from self.prove(apply(ans,sub), apply(remaining,sub),
indent+" ")

simple test case:
kbt = KBT(sts) # sts is simple triplestore from knowledgeGraph.py
kbt.ask_all([Atom('triple', ('http://www.wikidata.org/entity/Q262802",
Var('P'),Var('0"))) D)
The following are some larger examples from Wikidata. You must run
load_file to load the triples related to Christine Sinclair (Q262802). Otherwise
the queries won’t work.

https://aipython.org Version 0.9.15 December 23, 2024

https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/semweb.html%27)
https://www.swi-prolog.org/pldoc/doc_for?object=section(%27packages/semweb.html%27)
https://aipython.org

36
37
38
39
40
41
42
43
44
45
46
47
48

49

51
52

54

55
56
57

16.2. Integrating Datalog and Triple Store 379

The first query is how Christine Sinclair (Q262802) is related to Portland
Thorns (Q1446672) with two hops in the knowledge graph. It is asking for a P,
O and P1 such that

(Q262802, P, 0)&(0, P1,Q1446672)

knowledgeReasoning.py — (continued)

0 = Var('0'); 01 = Var('01")
P = Var('P")

P1 = Var('P1")

T=Var('T")

N = Var('N")

def triple(s,v,0): return Atom('triple',[s,v,0])
def 1t(a,b): return Atom('lt',[a,b])

ts = TripleStore()
kbts = KBT(ts)
#ts.load_file('http://www.wikidata.org/wiki/Special:EntityData/Q262802.nt")
262802 ='http://www.wikidata.org/entity/Q262802"'
How is Christine Sinclair (Q262802) related to Portland Thorns
(Q1446672) with 2 hops:
kbts.ask_all([triple(q262802, P, 0), triple(0, P1,
"http://www.wikidata.org/entity/Q1446672') 1)

The second is asking for the name of a team that Christine Sinclair (Q262802)
played for. It is asking for a O, T and N, where O is the reified object that gives
the relationship, T is the team and N is the name of the team. Informally (with
variables staring with uppercase and constants in lower case) this is

(4262802, p54,0)& (0O, p54, T)&(T, name, N)

Notice how the reified relation 'P54’ (member of sports team) is represented:

knowledgeReasoning.py — (continued)

What is the name of a team that Christine Sinclair played for:

kbts.ask_one([triple(q262802, 'http://www.wikidata.org/prop/P54',0),
triple(O, 'http://www.wikidata.org/prop/statement/P54',T),
triple(T, "http://schema.org/name' ,N)1)

The third asks for the name of a team that Christine Sinclair (Q262802)
played for at two different start times. It is asking for a N, D1 and D2, N is
the name of the team and D1 and D2 are the start dates. In Wikidata, P54 is
“member of sports team” and P580 is “start time”.

knowledgeReasoning.py — (continued)

The name of a team that Christine Sinclair played for at two different
times, and the dates

def playedtwice(s,n,d®,d1): return Atom('playedtwice',[s,n,do,d1])

S = Var('S")

N = Var('N")

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

380
Do = Var('De")
D1 = Var('D2")

16. Knowledge Graphs and Ontologies

kbts.add_clause(Clause(playedtwice(S,N,D0,D1), [

triple(s,
triple(O,
triple(s,
triple(01,

"http://www.wikidata.org/prop/P54', 0),
"http://www.wikidata.org/prop/statement/P54', T),
"http://www.wikidata.org/prop/P54', 01),
"http://www.wikidata.org/prop/statement/P54', T),

1t(0,01), # ensure different and only generated once

triple(T,
triple(O,
triple(01,
D))

"http://schema.org/name', N),
"http://www.wikidata.org/prop/qualifier/P580"', D@),
"http://www.wikidata.org/prop/qualifier/P580"', D1)

kbts.ask_all([playedtwice(q262802,N,D@,D1)]1)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

11
12
13
14
15
16
17
18
19
20
21
22
23
24

26

28

Chapter 17

Relational Learning

17.1 Collaborative Filtering

The code here is based on the gradient descent algorithm for matrix factoriza-
tion of Koren, Bell, and Volinsky|[2009].

A rating set consists of training and test data, each a list of (user, item, rating)
tuples.

relnCollFilt.py — Latent Property-based Collaborative Filtering

import random

import matplotlib.pyplot as plt
import urllib.request

from learnProblem import Learner
from display import Displayable

class Rating_set(Displayable):
"""A rating contains:
training_data: list of (user, item, rating) triples
test_data: list of (user, item, rating) triples
def __init__(self, training_data, test_data):
self.training_data = training_data
self.test_data = test_data

The following is a representation of Examples 17.5-17.7 of |[Poole and Mack-
worth| [2023]. This is a much smaller dataset than one would expect to work
well.

relnCollFilt.py — (continued)
grades_rs = Rating_set(# 3='A', 2='B', 1="C'
[('s1','c1',3), # training data
('s2','c1',1),

381

29
30
31
32
33
34

36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

382 17. Relational Learning

('s1','c2',2),
('s2','c3',2),
('s3','c2",2),

('s4','c3',2)],
[('s3','c4',3), # test data
('s4','c4", 1HD)
A CF_learner does stochastic gradient descent to make a predictor of rat-
ings for user-item pairs.

relnCollFilt.py — (continued)

class CF_learner(Learner):
def __init__(self,
rating_set, # a Rating_set
step_size = 0.01, # gradient descent step size
regularization = 1.0, # L2 regularization for full dataset
num_properties = 10, # number of hidden properties
property_range = 0.02 # properties are initialized to be
between

-property_range and property_range
):
self.rating_set = rating_set
self.training_data = rating_set.training_data
self.test_data = self.rating_set.test_data
self.step_size = step_size
self.regularization = regularization
self.num_properties = num_properties
self.num_ratings = len(self.training_data)
self.ave_rating = (sum(r for (u,i,r) in self.training_data)
/self .num_ratings)
self.users = {u for (u,i,r) in self.training_data}
self.items = {i for (u,i,r) in self.training_data}
self.user_bias = {u:0 for u in self.users}
self.item_bias = {i:0 for i in self.items}
self.user_prop = {u:[random.uniform(-property_range,property_range)
for p in range(num_properties)]
for u in self.users}
self.item_prop = {i:[random.uniform(-property_range,property_range)
for p in range(num_properties)]
for i in self.items}
the _delta variables are the changes internal to a batch:
self.user_bias_delta = {u:@ for u in self.users}
self.item_bias_delta = {i:0 for i in self.items}
self.user_prop_delta = {u:[@ for p in range(num_properties)]
for u in self.users}
{i:[@ for p in range(num_properties)]
for i in self.items}
zeros is used for users and items not in the training set
self.zeros = [0 for p in range(num_properties)]
self.epoch = @
self.display(1, "Predict mean:" "(Ave Abs,AveSumSq)",

self.item_prop_delta

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

75

76

78
79
80

81
82
83
84
85
86
87
88
89
90
91

92
93
94

96
97
98

99
100
101

102
103

104
105
106
107
108

17.1. Collaborative Filtering 383

"training =",self.eval2string(self.training_data,
useMean=True),
"test =",self.eval2string(self.test_data, useMean=True))

prediction returns the current prediction of a user on an item.

relnCollFilt.py — (continued)

def prediction(self,user,item):
"""Returns prediction for this user on this item.
The use of .get() is to handle users or items in test set but not
in the training set.
if user in self.user_bias: # user in training set
if item in self.item_bias: # item in training set
return (self.ave_rating
+ self.user_bias[user]
+ self.item_bias[item]
+ sum([self.user_proplLuser][pl*self.item_prop[item][p]
for p in range(self.num_properties)]))
else: # training set contains user but not item
return (self.ave_rating + self.user_bias[user])
elif item in self.item_bias: # training set contains item but not
user
return self.ave_rating + self.item_bias[item]
else:
return self.ave_rating

learn carries out num_epochs epochs of stochastic gradient descent with
batch_size giving the number of training examples in a batch. The number
of epochs is approximately the average number of times each training data
point is used. It is approximate because it processes the integral number of the
batch size.

relnCollFilt.py — (continued)

def learn(self, num_epochs = 50, batch_size=1000):
""" do (approximately) num_epochs iterations through the dataset
batch_size is the size of each batch of stochastic gradient
gradient descent.
batch_size = min(batch_size, len(self.training_data))
batch_per_epoch = len(self.training_data) // batch_size #

approximate
num_iter = batch_per_epoch*xnum_epochs
reglz =

self.step_size*self.regularizationxbatch_size/len(self.training_data)

#regularization per batch

for i in range(num_iter):
if i % batch_per_epoch == 0:
self.epoch += 1
self.display(1,"Epoch”, self.epoch, "(Ave Abs,AveSumSq)",

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

109
110
111
112

113
114
115
116
117

118

119
120
121

122
123
124
125

126
127
128
129

130
131
132
133

134
135

137
138

139
140
141
142
143
144

145
146
147

384 17. Relational Learning

"training =",self.eval2string(self.training_data),
"test =",self.eval2string(self.test_data))
determine errors for a batch
for (user,item,rating) in random.sample(self.training_data,
batch_size):
error = self.prediction(user,item) - rating
self.user_bias_deltaluser] += error
self.item_bias_deltal[item] += error
for p in range(self.num_properties):
self.user_prop_deltaluser][p] +=
error*self.item_proplitem][p]
self.item_prop_deltalitem][p] +=
error*self.user_propluser][p]
Update all parameters
for user in self.users:
self.user_bias[user] -=
(self.step_size*self.user_bias_deltaluser]
+reglzxself.user_bias[user])
self.user_bias_deltaluser] = 0
for p in range(self.num_properties):
self.user_propluser][p] -=
(self.step_sizexself.user_prop_deltaluser][p]
+ reglzxself.user_prop[user]pl)
self.user_prop_deltaluser][p] = @
for item in self.items:
self.item_bias[item] -=
(self.step_size*self.item_bias_deltal[item]
+ reglzxself.item_bias[item])
self.item_bias_deltal[item] = 0
for p in range(self.num_properties):
self.item_prop[item][p] -=
(self.step_sizexself.item_prop_deltalitem][p]
+ reglzxself.item_prop[item][pl)
self.item_prop_deltalitem][p] = @

The evaluate method evaluates current predictions on the rating set:

relnCollFilt.py — (continued)

def evaluate(self, ratings, useMean=False):
"""returns (average_absolute_error, average_sum_squares_error) for
ratings
win
abs_error = 0
sumsq_error = @
if not ratings: return (0,0)
for (user,item,rating) in ratings:
prediction = self.ave_rating if useMean else
self.prediction(user,item)
error = prediction - rating
abs_error += abs(error)
sumsq_error += error * error

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

17.1. Collaborative Filtering 385

148 return abs_error/len(ratings), sumsq_error/len(ratings)
149

150 def eval2string(self, xargs, **nargs):

151 """returns a string form of evaluate, with fewer digits
152

153 (abs,ssq) = self.evaluate(xargs, **nargs)

154 return f"({abs:.4f}, {ssq:.4f})"

Let’s test the code on the grades rating set:

relnCollFilt.py — (continued)

156 |#lg = CF_learner(grades_rs,step_size = 0.1, regularization = 0.01,
num_properties = 1)

157 | #1g.learn(num_epochs = 500)

158 |# lg.item_bias

159 |# lg.user_bias

160 |# lg.plot_property(@,plot_all=True) # can you explain why?

Exercise 17.1 In using CF_learner with grades_rs, does it work better with 0
properties? Is it overfitting to the data? How can overfitting be adjusted?

Exercise 17.2 Modify the code so that self.ave_rating is also learned. It should
start as the average rating. Should it be regularized? Does it change from the
initialized value? Does it work better or worse?

Exercise 17.3 With the Movielens 100K dataset and the batch size being the whole
training set, what happens to the error? How can this be fixed?

Exercise 17.4 Can the regularization avoid iterating through the parameters for
all users and items after a batch? Consider items that are in many batches versus
those in a few or even no batches. (Warning: This is challenging to get right.)

17.1.1 Plotting

The plot_predictions method plots the cumulative distributions for each ground
truth. Figure shows a plot for the Movielens 100K dataset. Consider the
rating = 1 line. The value for x is the proportion of the predictions with pre-
dicted value < x when the ground truth has a rating of 1. Similarly for the
other lines.

Figure is for one run on the training data. What would you expected
the test data to look like?

relnCollFilt.py — (continued)

162 def plot_predictions(self, examples="test"):

163

164 examples is either "test” or "training"” or the actual examples
165 e

166 if examples == "test"”:

167 examples = self.test_data

168 elif examples == "training”:

169 examples = self.training_data

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

170
171
172
173
174
175
176
177
178
179
180

181
182

386 17. Relational Learning

1.0 1 — rating=1 -
rating=2
—— rating=3
0.8 4 — rating=4
— rating=5
c
S
5
S 0.6 1
o
o
(]
2
L 0.4 1
3
1S
3
(9)
0.2 A
0.0 1
0 1 2 3 4 5
prediction
Figure 17.1: learnerl.plot_predictions(examples = "training")
plt.ion()

plt.xlabel("prediction”)
plt.ylabel("cumulative proportion")
self.actuals = [[] for r in range(90,6)]
for (user,item,rating) in examples:
self.actuals[rating].append(self.prediction(user,item))
for rating in range(1,6):
self.actuals[rating].sort()
numrat=len(self.actuals[rating]l)
yvals = [i/numrat for i in range(numrat)]
plt.plot(self.actuals[rating], yvals,
label="rating="+str(rating))
plt.legend()
plt.draw()

The plot_property method plots a single latent property; see Figure
Each (user, item, rating) is plotted where the x-value is the value of the property
for the user, the y-value is the value of the property for the item, and the rating
is plotted at this (x,y) position. That is, rating is plotted at the (x,y) position
(p(user), p(item)).

Because there are too many ratings to show, plot_property selects a ran-
dom number of points. It is difficult to see what is going on; the create_top_subset
method was created to show the most rated items and the users who rated the
most of these. This should help visualize how the latent property helps.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

184
185
186
187

188
189
190
191
192
193

194
195
196
197
198
199
200
201
202

17.1. Collaborative Filtering

387

1.5 1 3
1.0 1
234 4
1
1 4!%5 43 3 3
3 33 24 54 4 5
0.5 535 %2 3, 34 5 3
2 Ll 3 4" 5
1 3, A 5
3 4 4
" 3§ 4 3 472 1
£ 3 43 3 454434 2
4 3
LB54 5_)? 3 ‘2]’5 §53
1 2444555 44 3
~0.51 4 5,437 45t
3 S sdy 4 64 4ﬁ
4 3
4
3
5 2
—1.0 A 5
2
-15 -1.0 -05 0.0 0.5 1.0 1.5 2.0 2.5
users

Figure 17.2: learnerl.plot_property(0) with 200 random ratings plotted. Rating

(u,1,7) has r plotted a position (p(u),p(i)) where

def plot_property(self,

P, # property

relnCollFilt.py — (continued)

p is the selected latent property.

plot_all=False, # true if all points should be plotted

num_points=200 # number of
all
).
plot some
if plot_all is true

nnn

of the user-movie ratings,

random points plotted if not

num_points is the number of points selected at random plotted.

the plot has the users on the x-axis sorted by their value on

property p and
with the items on the y-axis sorted by

their value on property p and

the ratings plotted at the corresponding x-y position.

nnn

plt.ion()
plt.xlabel("users")
plt.ylabel("items")

user_vals = [self.user_proplullp]
for u in self.users]
item_vals = [self.item_prop[illp]

https://aipython.org Version 0.9.15

December 23, 2024

https://aipython.org

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

221
222
223
224
225
226
227
228
229
230
231

232
233
234
235
236

388 17. Relational Learning

for i in self.items]
plt.axis([min(user_vals)-0.02,
max(user_vals)+0.05,
min(item_vals)-0.02,
max (item_vals)+0.05])
if plot_all:
for (u,i,r) in self.training_data:
plt.text(self.user_proplullp],
self.item_prop[illp],
str(r))
else:
for i in range(num_points):
(u,i,r) = random.choice(self.training_data)
plt.text(self.user_proplullp],
self.item_prop[illp],
str(r))
plt.show()

17.1.2 Loading Rating Sets from Files and Websites

This assumes the form of the Movielens datasets Harper and Konstan| [2015]],
available from http://grouplens.org/datasets/movielens/

The Movielens datasets consist of (user, movie, rating, timestamp) tuples. The
aim here is to predict the future from the past. Tuples with a timestamp before
data_split form the training set, and those with a timestamp after form the
test set.

A rating set can be read from the Internet or read from a local file. The
default is to read the Movielens 100K dataset from the Internet. It would be
more efficient to save the dataset as a local file, and then set local _file = True, as
then it will not need to download the dataset every time the program is run.

relnCollFilt.py — (continued)

class Rating_set_from_file(Rating_set):
def __init__(self,
date_split=892000000,
local_file=False,
url="http://files.grouplens.org/datasets/movielens/ml-100k/u.data"”,
file_name="u.data"):
self.display(1,"Collaborative Filtering Dataset. Reading...")
if local_file:
lines = open(file_name, 'r')
else:
lines = (line.decode('utf-8') for line in
urllib.request.urlopen(url))
all_ratings = (tuple(int(e) for e in line.strip().split('\t"))
for line in lines)
self.training_data = []
self.training_stats = {1:0, 2:0, 3:0, 4:0 ,5:0}
self.test_data = []

https://aipython.org Version 0.9.15 December 23, 2024

http://grouplens.org/datasets/movielens/
https://aipython.org

237
238
239
240
241
242
243
244
245

246
247
248
249
250
251
252
253
254
255

256

258
259
260

261
262

263
264

265

266
267
268
269

17.1. Collaborative Filtering 389

self.test_stats = {1:0, 2:0, 3:0, 4:0 ,5:0}
for (user,item,rating,timestamp) in all_ratings:
if timestamp < date_split: # rate[3] is timestamp
self.training_data.append((user,item,rating))
self.training_stats[rating] += 1
else:
self.test_data.append((user,item,rating))
self.test_stats[rating] += 1
self.display(1,”...read:", len(self.training_data),"training
ratings and",
len(self.test_data),"test ratings”)
tr_users = {user for (user,item,rating) in self.training_data}
test_users = {user for (user,item,rating) in self.test_data}
self.display(1,"users:",len(tr_users),"training,”,len(test_users),"test,”,
len(tr_users & test_users),”in common")
tr_items = {item for (user,item,rating) in self.training_data}
test_items = {item for (user,item,rating) in self.test_data}
self.display(1,”items:",len(tr_items),"training,”,len(test_items), "test,",
len(tr_items & test_items),"”in common")
self.display(1,"Rating statistics for training set:
",self.training_stats)
self.display(1,"Rating statistics for test set: ",self.test_stats)

17.1.3 Ratings of top items and users

Sometimes it is useful to plot a property for all (user, item, rating) triples. There
are too many such triples in the data set. The method create_top_subset creates
a much smaller dataset where this makes sense. It picks the most rated items,
then picks the users who have the most ratings on these items. It is designed for
depicting the meaning of properties, and may not be useful for other purposes.
The resulting plot is shown in Figure[17.3]

relnCollFilt.py — (continued)

class Rating_set_top_subset(Rating_set):

def __init__(self, rating_set, num_items = (20,40), num_users =

(20,24)):

"""Returns a subset of the ratings by picking the most rated items,

and then the users that have most ratings on these, and then all of
the

ratings that involve these users and items.

num_items is (ni,si) which selects ni users at random from the top
si users

num_users is (nu,su) which selects nu items at random from the top
su items

(ni, si) = num_items

(nu, su) = num_users

items = {item for (user,item,rating) in rating_set.training_data}

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

390 17. Relational Learning

1.00_1 3 4 4 Z 5 0D 4 O 5] 330
0.75
2 % 5 3 4 23 384> 3 a4
05014 @ 2 3 3 33 438553 3 335
2973 a4 2 4 4 33 4534 5 452
5 8 5 8 4 24 45555 5 555
0.25
34 § 4 8 33 s5@e 9 mp
" 4 2 4 5 4552 5 344
£ 0.00
2 5 8 3 % 5 45 4554 5 345
_o02545 5 5 5 5 85 4535 5 445
3 8 4 & 5 33 34483 5 243
—05044 5 4 % 5 33 4554 3 245
5 5 2 4 33 3582 5 244
_0.75{4 3 4 4 4 23 4424 4 123
5 4 3 64 4 23 34483 1 243
-1.0012 5 4 2 4 22 4 314 121
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075
users

Figure 17.3: learnerl.plot_property(0) for 20 most rated items and 20 users with
most ratings on these. Users and items with similar property values overwrite each

other.

270 item_counts = {i:0 for i in items}

271 for (user,item,rating) in rating_set.training_data:

272 item_counts[item] += 1

273

274 items_sorted = sorted((item_counts[i],i) for i in items)

275 top_items = random.sample([item for (count, item) in
items_sorted[-si: 1], ni)

276 set_top_items = set(top_items)

277

278 users = {user for (user,item,rating) in rating_set.training_data}

279 user_counts = {u:0 for u in users}

280 for (user,item,rating) in rating_set.training_data:

281 if item in set_top_items:

282 user_counts[user] += 1

283

284 users_sorted = sorted((user_counts[u],u) for u in users)

285 top_users = random.sample([user for (count, user) in
users_sorted[-su:J]], nu)

286 set_top_users = set(top_users)

287

288 self.training_data = [(user,item,rating)

289 for (user,item,rating) in rating_set.training_data

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

290
291
292
293
294
295
296
297
298
299
300

301
302
303

11
12
13
14
15
16
17
18

20
21
22
23
24
25
26

27

17.2. Relational Probabilistic Models 391

if user in set_top_users and item in set_top_items]
self.test_data = []

movielens = Rating_set_from_file()
learner1 = CF_learner(movielens, num_properties = 1)

learner10 = CF_learner(movielens, num_properties = 10)

learneri.learn(50)

learnerl.plot_predictions(examples = "training")

learnerl.plot_predictions(examples = "test")

learnerl.plot_property(0)

movielens_subset = Rating_set_top_subset(movielens,num_items = (20,40),
num_users = (20,40))

learner_s = CF_learner(movielens_subset, num_properties=1)

learner_s.learn(1000)

learner_s.plot_property(@,plot_all=True)

17.2 Relational Probabilistic Models

The following implements relational belief networks — belief networks with
plates. Plates correspond to logical variables.

— relnProbModels.py — Relational Probabilistic Models: belief networks with plates
from display import Displayable

from probGraphicalModels import BeliefNetwork

from variable import Variable

from probRC import ProbRC

from probFactors import Prob

import random

boolean = [False, True]

A ParVar is a parametrized random variable, which consists of the name, a list
of logical variables (plates), a domain, and a position. For each assignment of
an entity to each logical variable, there is a random variable in a grounding.

relInProbModels.py — (continued)

class ParVar(object):
"""Parametrized random variable
def __init__(self, name, log_vars, domain, position=None):
self.name = name # string
self.log_vars = log_vars
self.domain = domain # list of values
self.position = position if position else (random.random(),
random. random())
self.size = len(domain)

nnn

The class RBN is of relational belief networks. A relational belief network con-
sists of a title, a set of parvariables, and a set of parfactors.

relnProbModels.py — (continued)

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

29
30
31
32
33
34

36
37

38

39
40
41

42
43
44
45

46

47
48

49
50
51

52
53

54
55
56
57
58
59

60

61

62

63

392

class RBN(Displayable):

17. Relational Learning

def __init__(self, title, parvars, parfactors):

self.title = title

self.parvars = parvars
self.parfactors = parfactors
self.log_vars = {V for PV in parvars for V in PV.log_vars}

The grounding of a belief network with a population for each logical variable
is a belief network, for which any of the belief network inference algorithms

work.

relnProbModels.py — (continued)

def ground(self, populations, offsets=None):
"""Ground the belief network with the populations of the logical

variables.

populations is a dictionary that maps each logical variable to the
list of individuals.
Returns a belief network representation of the grounding.

nnn

assert all(lv in populations for lv in self.log_vars), f"{[1lv for
lv in self.log_vars if 1lv not in populations]} have no

population”

self.cps = [] # conditional probabilities in the grounding

self.var_dict = {}

ground variables created

for pp in self.parfactors:
self.ground_parfactor(pp, list(self.log_vars), populations, {3},

offsets)

return BeliefNetwork(self.title+"_grounded”,
self.var_dict.values(), self.cps)

def ground_parfactor(self, parfactor, lvs, populations, context,

offsets):

nnn

parfactor is the parfactor to get instances of
lvs is a list of the logical variables in parfactor not assigned in

context

populations is {logical_variable: population} dictionary

context is a {logical_variable:value} dictionary for
logical_variable in parfactor

offsets a {loc_var:(x_offset,y_offset)} dictionary or None

nnn

if 1vs == [1:

if isinstance(parfactor, Prob):

self.cps.append(Prob(self.ground_pvr(parfactor.child,context,offsets),

else:

[self.ground_pvr(p,context,offsets)
for p in parfactor.parents],

parfactor.values))

print("Parfactor not implemented for",parfactor,"of
type",type(parfactor))

else:

https://aipython.org

Version 0.9.15

December 23, 2024

https://aipython.org

64
65

66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82

84
85
86
87
88
89
90
91
92
93

94
95

96

97
98
99
100
101
102
103
104
105

17.2. Relational Probabilistic Models

for val in populations[1lvs[@]]:
self.ground_parfactor(parfactor, lvs[1:], populations,
{lvs[@]:val}|context, offsets)

def ground_pvr(self, prv, context, offsets):
prv is a parametrized random variable
context is a logical_variable:value dictionary that assigns all
logical variables in prv
offsets a {loc_var: (x_offset,y_offset)} dictionary or None
if isinstance(prv,ParVar):
args = tuple(context[1lv] for 1lv in prv.log_vars)
if (prv,args) in self.var_dict:
return self.var_dict[(prv,args)]
else:
new_gv = GrVar(prv, args, offsets)
self.var_dict[(prv,args)] = new_gv
return new_gv
else: # allows for non-parametrized random variables
return prv

A GrVar is a variable constructed by grounding a parametrized random vari-

able with respect to a tuple of values for the logical variables.

relInProbModels.py — (continued)

grounds a parametrized random variable with respect to a context

class GrVar(Variable):
"""Grounded Variable
def __init__(self, parvar, args, offsets = None):
"""A grounded variable
parvar is the parametrized variable
args is a tuple of a value for each random variable

offsets is a map between the value and the (x,y) offsets

nnn

nnn

if offsets:
pos = sum_positions([parvar.position]+[offsets[a] for a in
argsl)
else:
pos = sum_positions([parvar.position,
(random.uniform(-0.2,0.2),random.uniform(-0.2,0.2))1)
Variable.__init__(self,parvar.name+"("+",".join(args)+")",
parvar.domain, pos)
self.parvar= parvar
self.args = tuple(args)
self.hash_value = None

def __hash__(self):
if self.hash_value is None: # only hash once
self.hash_value = hash((self.parvar, self.args))
return self.hash_value

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

394 17. Relational Learning

106 def __eq__(self, other):

107 return isinstance(other,GrVar) and self.parvar == other.parvar and
self.args == other.args

108

109 | def sum_positions(poslist):

110 (x,y) = (0,0)

111 for (xo,yo) in poslist:

112 X += X0

113 y += yo

114 return (x,y)

The following is a representation of Examples 17.5-17.7 of |[Poole and Mack-
worth| [2023]. The plate model — represented here using grades — is shown in
Figure 17.4. The observation in obs corresponds to the dataset of Figure 17.3.
The grounding in grades_gr corresponds to Figure 17.5, but also includes the
Grade variables not needed to answer the query (see exercise below).

Try the commented out queries to the Python shell:

relnProbModels.py — (continued)

116 |Int = ParVar("Intelligent”, ["St"], boolean, position=(0.0,0.7))
117 |Grade = ParVar("Grade”, ["St","Co"]1, ["A", "B", "C"], position=(0.2,0.6))
118 |Diff = ParVar("Difficult”, ["Co"], boolean, position=(0.3,0.9))
119

120 |pg = Prob(Grade, [Int, Diff],

121 [[{"A": @.1, "B":0.4, "C":0.5},

122 {"A": .01, "B":0.09, "C":0.9}1,
123 [{"A": 0.9, "B":0.09, "C":0.01},

124 {"A": 0.5, "B":0.4, "C":0.13}1D)

125 |pi = Prob(Int, [], [0.5, ©.5])
126 |pd = Prob(Diff, [], [0.5, 0.5])
127 | grades = RBN("Grades RBN", {Int, Grade, Diff}, {pg,pi,pd})

128
129 |students = ["s1", "s2", "s3", "s4"]
130 | st_offsets = {st:(0,-0.2%xi) for (i,st) in enumerate(students)}
131 |courses = ["c1"”, "c2", "c3", "c4"]

132 |co_offsets = {co:(0.2*i,0) for (i,co) in enumerate(courses)}
133 | grades_gr = grades.ground({"St": students, "Co": courses},
134 offsets= st_offsets | co_offsets)
135
136 |obs = {GrVar(Grade,["s1","c1"1):"A", GrVar(Grade,["s2","c1"]):"C",
GrVar(Grade,["s1","c2"]):"B",

137 GrVar(Grade,["s2","c3"]1):"B", GrVar(Grade,["s3","c2"]):"B",
GrVar(Grade,["s4","c3"]1):"B"}

138
139 |# grades_rc = ProbRC(grades_gr)

140 |# grades_rc.show_post({GrVar(Grade,["s1","c1"]1):"A"},fontsize=10)

141 | #

grades_rc.show_post ({GrVar(Grade,["s1","c1"]1):"A",GrVar(Grade,["s2","c1"]):"C"})
142 | #

grades_rc.show_post({GrVar(Grade,["s1","c1"]1):"A",GrVar(Grade,["s2","c1"]):"C",
GrVar(Grade,["s1","c2"1):"B"})

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

143
144
145
146
147

17.2. Relational Probabilistic Models 395

grades_rc.
grades_rc.
grades_rc.
grades_rc.
grades_rc.

Intelligent(s1)
False: 0.060
True: 0.940

Intelligent(s2)
False: 0.940
True: 0.060

Intelligent(s3)
False: 0.500
True: 0.500

Intelligent(s4)
False: 0.500
True: 0.500

Grades RBN_grounded observed: {Grade(s1,cl1): 'A', Grade(s2,c1): 'C', Grade(s1,c2): 'B'}

Difficult(c1)
False: 0.500
True: 0.500

Difficult(c2)
False: 0.222
True: 0.778

Difficult(c3)
False: 0.500
True: 0.500

Difficult(c4)
False: 0.500
True: 0.500

Grade(s1,c3)
A: 0.661
B: 0.245
C: 0.094

Grade(s1,c4)

A: 0.661
B: 0.245
C: 0.094

[—— Grade(s2,c2) Grade(s2,c3) Grade(s2,c4)

A: 0.063 A: 0.094 A: 0.094
B: 0.170 B: 0.245 B: 0.245

C:0.767 C: 0.661 C: 0.661

Grade(s3,c3) Grade(s3,c4)
A: 0.377 A: 0.377
B: 0.245 B: 0.245

C: 0.377

C: 0.377

Grade(s4,cl) — Grade(s4,c2) Grade(s4,c3) Grade(s4,c4)
H A: 0.309 A: 0.377 A: 0.377

B: 0.245 B: 0.245 B: 0.245

C: 0.446 C: 0.377 C: 0.377

Figure 17.4: Grounded network with three observations

show_post (obs, fontsize=10)
query(GrVar(Grade, ["s3","c4"]), obs)
query(GrVar(Grade,["s4","c4"]), obs)
query(GrVar(Int,["s3"]), obs)
query(GrVar(Int,["s4"]1), obs)

Figure shows the distribution over ground variables after the 3rd show_post
in the code above (with 3 grades observed).

Exercise 17.5 What are advantages and disadvantages of using this formulation
over using CF_learner with grades_rs? Think about overfitting, and where the
parameters come from.

Exercise 17.6 The grounding above creates a random variable for each element
for each possible combination of individuals in the populations. Change it so that
it only creates as many random variables as needed to answer a query. For ex-
ample, for the observations and queries above, only the variables in Figure 17.5 in
Poole and Mackworth! [2023] need to be created.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Chapter 18

Version History

e 2024-12-19 Version 0.9.15. GUIs made more consistent and robust (with
closing working).

* 2024-12-09 Version 0.9.14. Code simplified, user manual has more expla-
nation. This is a candidate release for Version 1.0.

* 2024-04-30 Version 0.9.13: Minor changes including counterfactual rea-
soning.

* 2023-12-06 Version 0.9.12: Top-down proof for Datalog (ch 15) and triple
store (ch 16)

® 2023-11-21 Version 0.9.11 updated and simplified relational learning, show
relational belief networks

® 2023-11-07 Version 0.9.10 Improved GUIs and test cases for decision-theoretic
planning (MDPs) and reinforcement learning.

® 2023-10-6 Version 0.9.8 GUIS for search, Bayesian learning, causality and
many smaller changes.

e 2023-07-31 Version 0.9.7 includes relational probabilistic models and smaller
changes

* 2023-06-06 Version 0.9.6 controllers are more consistent. Many smaller
changes.

* 2022-08-13 Version 0.9.5 major revisions including extra code for causality
and deep learning

¢ 2021-07-08 Version 0.9.1 updated the CSP code to have the same repre-
sentation of variables as used by the probability code

397

398 18. Version History

* 2021-05-13 Version 0.9.0 Major revisions to chapters 8 and 9. Introduced
recursive conditioning, simplified much code. New section on multia-
gent reinforcement learning.

¢ 2020-11-04 Version 0.8.6 simplified value iteration for MDPs.
* 2020-10-20 Version 0.8.4 planning simplified and fixed arc costs.
* 2020-07-21 Version 0.8.2 added positions and string to constraints

* 2019-09-17 Version 0.8.0 represented blocks world (Section |6.1.2) due to
bug found by Donato Meoli.

https://aipython.org Version 0.9.15 December 23, 2024

https://aipython.org

Bibliography

Chen, T. and Guestrin, C. (2016), Xgboost: A scalable tree boosting system. In
KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 785-794, URL https://doi.org/10.1145/2939672.
2939785.

Chollet, E. (2021), Deeep Learning with Python. Manning.

Dua, D. and Graff, C. (2017), UCI machine learning repository. URL http://
archive.ics.uci.edu/ml. [149

Glorot, X. and Bengio, Y. (2010), Understanding the difficulty of training deep
feedforward neural networks. In Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 249-256, URL https://proceedings.mlr.
press/v9/gloroti@a.htmll

Harper, F. M. and Konstan, J. A. (2015), The MovieLens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems, 5(4).

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W.,, Ma, W,, Ye, Q., and Liu, T.-
Y. (2017), LightGBM: A highly efficient gradient boosting decision tree. In
Advances in Neural Information Processing Systems 30.

Koren, Y., Bell, R., and Volinsky, C. (2009), Matrix factorization techniques for
recommender systems. IEEE Computer, 42(8):30-37.

Lichman, M. (2013), UCI machine learning repository. URL http://archive.
ics.uci.edu/ml. [149]

Pearl, J. (2009), Causality: Models, Reasoning and Inference. Cambridge University
Press, 2nd edition.

399

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

400 Bibliography

Pérez, F. and Granger, B. E. (2007), IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21-29, URL https://

ipython.org. [10]

Poole, D. L. and Mackworth, A. K. (2023), Artificial Intelligence: foundations of
computational agents. Cambridge University Press, 3rd edition, URL https:
//artint.info. 9] 25] 27| B9} 40} 48] 50, B1) [75} 114} 123} [194] 208} 211 212} 219}
[220] 63| 296} 299} 01} [302} [19} 321} 527 332 334} [352] 360}, 367} 368} 370} 72
878, 381} 394} 395]

https://aipython.org Version 0.9.15 December 23, 2024

https://ipython.org
https://ipython.org
https://artint.info
https://artint.info
https://aipython.org

Index

a-B pruning,

A* search,

A* Search, [6]]

action, [125]

agent, 25 [315]

argmax, [19]

assignment, [70} 201

assumable,

asynchronous value iteration,
augmented feature, [161

Bayesian network,
belief network,
blocks world,
Boolean feature, [150

botton-up proof,
branch-and-bound search,

class
Action_instance, [142]
Agent,
Are,
Askable,
Assumable,
BNfromDBN,
BeliefNetwork,

401

Boosted _dataset,
Boosting learner, [183)
Branch_and_bound,
CF _learner,|381

CPD, 203
CPDrename,250]

CSP, [Tl
CSP_from_STRIPS,
Clause,
Con_solver,
ConstantCPD, 203
Constraint, [70]

DBN, 250

DBNVEfilter,
DBNuariable,

DF _Branch_and_bound,
DT learner,

Data_from _file,
Data_from _files,

Data _set,[151]
Data_set_augmented,
DecisionFunction, 289
DecisionNetwork,
DecisionVariable,

Displayable,
Dist,

https://aipython.org

Dropout _layer,

EM _learner,
Env_from_MDP, 320
Environment, 26|
Evaluate,[156]

Factor, 207
FactorMax, 294
FactorObserved,
FactorRename, [250]
FactorSum,
Forward_STRIPS,[131
FrontierPQ,
GTB_learner, {185
GibbsSampling,
GrVar,[393]
GraphicalModel,
GridDomain,
HMM, 239

HMMV Efilter,
HMM _Controlled,
HMM _Local,
HMMparticleFilter,
IFeq, [206]
InferenceMethod,
KB, [110} 368

KBA, [TT9

KBT,[B78

K fold dataset,
K_means_learner,
Layer,[187]
Learner,[163)|

LikelihoodWeighting,

Linear_complete_layer, [189

Linear_complete_layer_RMS _Prop,
193

Linear_complete_layer_momentum,
193

Linear_learner, {174

LogisticRegression, [204]

MDP,[29¢]

MDPtiny,

Magic_sum, 353

Model_based _reinforcement _learner,
334

Monster_game_env,[303} 21|

Version 0.9.15

Index

NN, [I97]

Node, 352

NoisyOR,

POP_node,

POP _search_from_STRIPS, [144]

ParVar,[391]

ParticleFiltering,

Party,.no,

Path,

Planning_problem,

Plot_env,

Plot _prices,

Predict,

Prob,

ProbDT,

ProbRC,

ProbSearch,

Q_learner,

RBN, 59T

RC_DN, 290)

RL_agent,[316|

RL_env, 315

Rating_set,

ReLU layer, [190]

Regression_STRIPS, [135]

RejectionSampling,

Rob_body,

Rob_env,

Rob_middle layer,

Rob_top_layer,

Runtime_distribution,|103

SARSA,

SARSA _LFA learner,|340

SLSearcher,

STRIPS _domain,|126

SameAs,

SamplingInferenceMethod,

Search_from_CSP,

Search_problem,

Search_problem_from_explicit_graph,
43]

Search_with_AC_from_CSP,

Searcher,

SearcherGUI,

SearcherMPP,

December 23, 2024

https://aipython.org

Index

Show_Localization, 243

Sigmoid_layer,
SoftConstraint,
State, [131]

Strips,
Subgoal,
TP_agent, 28]
TP_env,[27]
TabFactor,

TripleStore,
Updatable_priority_queue,
Utility,
UtilityTable, 28]
VE,[24]
VE_DN, 294
Variable,
clause, (109
collaborative filtering,
comprehensions,
condition,
conditional probability distribution
(CPD),
consistency algorithms,
constraint, [70]
constraint satisfaction problem,
CPD (conditional probability distri-
bution),
cross validation, (172
CSP, 69
consistency, [87]
domain splitting,
search,
stochastic local search,

currying, [74]

datalog,
dataset, [150

DBN
filtering,
unrolling,
DBN (dynamic belief network),
debugging,
decision network,
decision tree learning,
decision tree factors, [206

https://aipython.org

Version 0.9.15

403

decision variable,
deep learning,
display,
Displayable,
domain splitting,

Dropout, [194
dynamic belief network (DBN),
representation, [249]

EM, 266]

environment, 25| 26 BT5]
error, [I55]

example, [T50]
explanation, [115]

explicit graph,
factor,

factor_times, 226

feature,

feature engineering,

file
agentBuying.py, 27
agentEnv.py, B
agentFollowTarget.py,
agentMiddle.py,
agentTop.py, 5]
agents.py, 26|
cspConsistency.py, [87]
cspConsistencyGULpy, [92]
cspDFS.py, [83]
cspExamples.py,
cspProblem.py,
cspSLS.py,
cspSearch.py,
cspSoft.py,
decnNetworks.py,
display.py,
knowledgeGraph.py,

knowledgeReasoning.py,
learnBayesian.py, 257

learnBoosting.py, [182)
learnCrossValidation.py,

learnDT.py,
learnEM.py,
learnKMeans.py,

December 23, 2024

https://aipython.org

https://aipython.org

learnLinear.py,

learnNN.py,
learnNolnputs.py, [164]

learnProblem.py, [150)
logicAssumables.py,[119)

logicBottomUp.py,
logicExplain.py,

logicNegation.py,
logicProblem.py,[109

logicRelation.py, 365

logicTopDown.py,

masLearn.py, 357
masMiniMax.py,

masProblem.py, 352

mdpExamples.py,
mdpGULpy,
mdpProblem.py,
probCounterfactual.py,
probDBN.py,
probDo.py,
probExamples.py,R11
probFactors.py, 20]]
probGraphicalModels.py,
probHMM.py,

probLocalization.py,
probRC.py,
probStochSim.py,
probVE.py,
pythonDemo.py,

relnCollFilt.py,
relnExamples.py, {368

relnProbModels.py,
rlExamples.py, 319
rlFeatures.py, 340
rIGULpy, 344
rlGameFeature.py,
tIModelLearner.py, 334
rIProblem.py,
rIQExperienceReplay.py,
rlQLearner.py,
rIStochasticPolicy.py,
searchBranchAndBound.py,
searchExample.py,
searchGUL py, 56|
searchGeneric.py,

Version 0.9.15

Index

searchGrid.py,
searchMPP.py,

searchProblem.py,
searchTest.py, [67]
stripsCSPPlanner.py, [138
stripsForwardPlanner.py,

stripsHeuristic.py, [133]
stripsPOP.py, [142]
stripsProblem.py,
stripsRegressionPlanner.py, [135]
utilities.py,
variable.py,
filtering,
DBN, 255
flip,
forward planning,
frange,

ftype,
fully observable,

game, B51]
Gibbs sampling,
graphical model,

heuristic planning,
hidden Markov model,

hierarchical controller,
HMM
exact filtering,
particle filtering,
HMM (hidden Markov models),

importance sampling,

—

31

interact

proofs, [116]
ipython,
k-means, 261
kernel,
knowledge base,
knowledge graph,

learner, [163|

learning, [149H199| 257H270] 315349,

B8TH391]
cross validation, (172

December 23, 2024

https://aipython.org

Index

decision tree,
deep,
deep learning,
EM, [266]

k-means, 261
linear regression, m
linear classification, [174
neural network,
no inputs,
reinforcement,
relational,
supervised,
with uncertainty, 270
LightGBM, [185]
likelihood weighting,
linear regression, [174]
linear classification, 174
localization, [242
logic program,
logistic regression, 204
logit,
loss,

magic square, 353]
magic-sum game, 353
Markov Chain Monte Carlo, 235]
Markov decision process, 296
max_display_level,
MCMC, 235
MDP, 296} [320]
GUI,
method
consistent,
holds,
maxh,
zero,[137]
minimax, 351]
minimax algorithm, 355
minsets, [T20]
model-based reinforcement learner,
334

multiagent system,
multiple path pruning,

n-queens problem,

https://aipython.org

Version 0.9.15

405

naive search probabilistic inference,
218

naughts and crosses,

neural network,

noisy-or, [204]

NotImplementedError,

partial-order planner, [142]

particle filtering,
HMM:s, 245

planning,
CSP,[138]

decision network,
forward,

MDP, [296]

partial order,

regression, [135]

with certainty, 148
with learning,

with uncertainty, 314
plotting

agents in time, 29]
reinforcement learning,
robot environment,
run-time distribution, {103
stochastic simulation, [236

predictor, [I55]

Prob,

probabilistic inference methods,

probability,

proof
bottom-up, [112]
explanation, [115

top-down, [114}

proposition, [109]
Python, [9]

Q learning,
query, @

queryDO, 277
RC,[220} 250

recursive conditioning (RC), 220
recursive conditioning for decision
networks, 290

regression planning,
December 23, 2024

https://aipython.org

406

reinforcement learning, 349

environment, 3T5]

feature-based,

model-based,

Q-learning,
rejection sampling, 230]
relational learning,
relations, [365

ReLU, [190]

resampling,
robot

body,
middle layer,
plotting,
top layer,
world,
robot delivery domain, [126]
run time, [16]
runtime distribution, [103

sampling,
importance sampling,
belief networks,

likelihood weighting,
particle filtering,
rejection, 230]

SARSA, 526

scope, [70]

search,
A¥,
branch-and-bound,
multiple path pruning,

search_with_any_conflict,

search_with_var_pq,

show,

sigmoid,

softmax,

stochastic local search,
any-conflict,
two-stage choice,

stochastic simulation, [228

tabular factor, [205
test

SLS, [104]

https://aipython.org

Version 0.9.15

Index

tic-tac-toe, 353
top-down proof,
triple store,

uncertainty, @
unification,

unit test, 21} [61} [83 [T13] 114} [116]

unrolling

DBN, 253]
updatable priority queue, [10]]
utility, [281]
utility table,

value iteration, [306

variable,
variable elimination (VE),
variable elimination for decision net-

works,
VE, 224
XGBoost, [185]
yield,
December 23, 2024

https://aipython.org

	Contents
	1 Python for Artificial Intelligence
	1.1 Why Python?
	1.2 Getting Python
	1.3 Running Python
	1.4 Pitfalls
	1.5 Features of Python
	1.5.1 f-strings
	1.5.2 Lists, Tuples, Sets, Dictionaries and Comprehensions
	1.5.3 Generators
	1.5.4 Functions as first-class objects

	1.6 Useful Libraries
	1.6.1 Timing Code
	1.6.2 Plotting: Matplotlib

	1.7 Utilities
	1.7.1 Display
	1.7.2 Argmax
	1.7.3 Probability

	1.8 Testing Code

	2 Agent Architectures and Hierarchical Control
	2.1 Representing Agents and Environments
	2.2 Paper buying agent and environment
	2.2.1 The Environment
	2.2.2 The Agent
	2.2.3 Plotting

	2.3 Hierarchical Controller
	2.3.1 World
	2.3.2 Body
	2.3.3 Middle Layer
	2.3.4 Top Layer
	2.3.5 Plotting

	3 Searching for Solutions
	3.1 Representing Search Problems
	3.1.1 Explicit Representation of Search Graph
	3.1.2 Paths
	3.1.3 Example Search Problems

	3.2 Generic Searcher and Variants
	3.2.1 Searcher
	3.2.2 GUI for Tracing Search
	3.2.3 Frontier as a Priority Queue
	3.2.4 A* Search
	3.2.5 Multiple Path Pruning

	3.3 Branch-and-bound Search

	4 Reasoning with Constraints
	4.1 Constraint Satisfaction Problems
	4.1.1 Variables
	4.1.2 Constraints
	4.1.3 CSPs
	4.1.4 Examples

	4.2 A Simple Depth-first Solver
	4.3 Converting CSPs to Search Problems
	4.4 Consistency Algorithms
	4.4.1 Direct Implementation of Domain Splitting
	4.4.2 Consistency GUI
	4.4.3 Domain Splitting as an interface to graph searching

	4.5 Solving CSPs using Stochastic Local Search
	4.5.1 Any-conflict
	4.5.2 Two-Stage Choice
	4.5.3 Updatable Priority Queues
	4.5.4 Plotting Run-Time Distributions
	4.5.5 Testing

	4.6 Discrete Optimization
	4.6.1 Branch-and-bound Search

	5 Propositions and Inference
	5.1 Representing Knowledge Bases
	5.2 Bottom-up Proofs (with askables)
	5.3 Top-down Proofs (with askables)
	5.4 Debugging and Explanation
	5.5 Assumables
	5.6 Negation-as-failure

	6 Deterministic Planning
	6.1 Representing Actions and Planning Problems
	6.1.1 Robot Delivery Domain
	6.1.2 Blocks World

	6.2 Forward Planning
	6.2.1 Defining Heuristics for a Planner

	6.3 Regression Planning
	6.3.1 Defining Heuristics for a Regression Planner

	6.4 Planning as a CSP
	6.5 Partial-Order Planning

	7 Supervised Machine Learning
	7.1 Representations of Data and Predictions
	7.1.1 Creating Boolean Conditions from Features
	7.1.2 Evaluating Predictions
	7.1.3 Creating Test and Training Sets
	7.1.4 Importing Data From File
	7.1.5 Augmented Features

	7.2 Generic Learner Interface
	7.3 Learning With No Input Features
	7.3.1 Evaluation

	7.4 Decision Tree Learning
	7.5 Cross Validation and Parameter Tuning
	7.6 Linear Regression and Classification
	7.7 Boosting
	7.7.1 Gradient Tree Boosting

	8 Neural Networks and Deep Learning
	8.1 Layers
	8.1.1 Linear Layer
	8.1.2 ReLU Layer
	8.1.3 Sigmoid Layer

	8.2 Feedforward Networks
	8.3 Improved Optimization
	8.3.1 Momentum
	8.3.2 RMS-Prop

	8.4 Dropout
	8.5 Examples

	9 Reasoning with Uncertainty
	9.1 Representing Probabilistic Models
	9.2 Representing Factors
	9.3 Conditional Probability Distributions
	9.3.1 Logistic Regression
	9.3.2 Noisy-or
	9.3.3 Tabular Factors and Prob
	9.3.4 Decision Tree Representations of Factors

	9.4 Graphical Models
	9.4.1 Showing Belief Networks
	9.4.2 Example Belief Networks

	9.5 Inference Methods
	9.5.1 Showing Posterior Distributions

	9.6 Naive Search
	9.7 Recursive Conditioning
	9.8 Variable Elimination
	9.9 Stochastic Simulation
	9.9.1 Sampling from a discrete distribution
	9.9.2 Sampling Methods for Belief Network Inference
	9.9.3 Rejection Sampling
	9.9.4 Likelihood Weighting
	9.9.5 Particle Filtering
	9.9.6 Examples
	9.9.7 Gibbs Sampling
	9.9.8 Plotting Behavior of Stochastic Simulators

	9.10 Hidden Markov Models
	9.10.1 Exact Filtering for HMMs
	9.10.2 Localization
	9.10.3 Particle Filtering for HMMs
	9.10.4 Generating Examples

	9.11 Dynamic Belief Networks
	9.11.1 Representing Dynamic Belief Networks
	9.11.2 Unrolling DBNs
	9.11.3 DBN Filtering

	10 Learning with Uncertainty
	10.1 Bayesian Learning
	10.2 K-means
	10.3 EM

	11 Causality
	11.1 Do Questions
	11.2 Counterfactual Reasoning
	11.2.1 Choosing Deterministic System
	11.2.2 Firing Squad Example

	12 Planning with Uncertainty
	12.1 Decision Networks
	12.1.1 Example Decision Networks
	12.1.2 Decision Functions
	12.1.3 Recursive Conditioning for Decision Networks
	12.1.4 Variable elimination for decision networks

	12.2 Markov Decision Processes
	12.2.1 Problem Domains
	12.2.2 Value Iteration
	12.2.3 Value Iteration GUI for Grid Domains
	12.2.4 Asynchronous Value Iteration

	13 Reinforcement Learning
	13.1 Representing Agents and Environments
	13.1.1 Environments
	13.1.2 Agents
	13.1.3 Simulating an Environment-Agent Interaction
	13.1.4 Party Environment
	13.1.5 Environment from a Problem Domain
	13.1.6 Monster Game Environment

	13.2 Q Learning
	13.2.1 Exploration Strategies
	13.2.2 Testing Q-learning

	13.3 Q-leaning with Experience Replay
	13.4 Stochastic Policy Learning Agent
	13.5 Model-based Reinforcement Learner
	13.6 Reinforcement Learning with Features
	13.6.1 Representing Features
	13.6.2 Feature-based RL learner

	13.7 GUI for RL

	14 Multiagent Systems
	14.1 Minimax
	14.1.1 Creating a two-player game
	14.1.2 Minimax and - Pruning

	14.2 Multiagent Learning
	14.2.1 Simulating Multiagent Interaction with an Environment
	14.2.2 Example Games
	14.2.3 Testing Games and Environments

	15 Individuals and Relations
	15.1 Representing Datalog and Logic Programs
	15.2 Unification
	15.3 Knowledge Bases
	15.4 Top-down Proof Procedure
	15.5 Logic Program Example

	16 Knowledge Graphs and Ontologies
	16.1 Triple Store
	16.2 Integrating Datalog and Triple Store

	17 Relational Learning
	17.1 Collaborative Filtering
	17.1.1 Plotting
	17.1.2 Loading Rating Sets from Files and Websites
	17.1.3 Ratings of top items and users

	17.2 Relational Probabilistic Models

	18 Version History
	Bibliography
	Index

