Python code for Artificial Intelligence: Foundations of Computational Agents

David L. Poole and Alan K. Mackworth

Version 0.7.7 of August 8, 2019.

http://aipython.org http://artint.info

©David L Poole and Alan K Mackworth 2017.

All code is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. See: http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This document and all the code can be downloaded from http://artint.info/AIPython/ or from http://aipython.org

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research and testing of the theories and programs to determine their effectiveness. The authors and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.
Contents

1. **Python for Artificial Intelligence** 7
 1.1 Why Python? ... 7
 1.2 Getting Python ... 7
 1.3 Running Python ... 8
 1.4 Pitfalls ... 9
 1.5 Features of Python 9
 1.6 Useful Libraries 13
 1.7 Utilities ... 14
 1.8 Testing Code .. 17

2. **Agents and Control** 19
 2.1 Representing Agents and Environments 19
 2.2 Paper buying agent and environment 20
 2.3 Hierarchical Controller 23

3. **Searching for Solutions** 31
 3.1 Representing Search Problems 31
 3.2 Generic Searcher and Variants 38
 3.3 Branch-and-bound Search 44

4. **Reasoning with Constraints** 49
 4.1 Constraint Satisfaction Problems 49
 4.2 Solving a CSP using Search 56
 4.3 Consistency Algorithms 58
Contents

4.4 Solving CSPs using Stochastic Local Search 63

5 Propositions and Inference ... 73
 5.1 Representing Knowledge Bases 73
 5.2 Bottom-up Proofs ... 75
 5.3 Top-down Proofs .. 77
 5.4 Assumables ... 78

6 Planning with Certainty ... 81
 6.1 Representing Actions and Planning Problems 81
 6.2 Forward Planning .. 85
 6.3 Regression Planning .. 89
 6.4 Planning as a CSP ... 92
 6.5 Partial-Order Planning ... 95

7 Supervised Machine Learning .. 103
 7.1 Representations of Data and Predictions 103
 7.2 Learning With No Input Features 113
 7.3 Decision Tree Learning ... 116
 7.4 Cross Validation and Parameter Tuning 120
 7.5 Linear Regression and Classification 122
 7.6 Deep Neural Network Learning 128
 7.7 Boosting ... 133

8 Reasoning Under Uncertainty ... 137
 8.1 Representing Probabilistic Models 137
 8.2 Factors ... 138
 8.3 Graphical Models .. 143
 8.4 Variable Elimination ... 145
 8.5 Stochastic Simulation ... 147
 8.6 Markov Chain Monte Carlo .. 155
 8.7 Hidden Markov Models ... 157
 8.8 Dynamic Belief Networks .. 163

9 Planning with Uncertainty ... 167
 9.1 Decision Networks ... 167
 9.2 Markov Decision Processes ... 172
 9.3 Value Iteration ... 173

10 Learning with Uncertainty .. 177
 10.1 K-means ... 177
 10.2 EM ... 181

11 Multiagent Systems .. 185
 11.1 Minimax ... 185
<table>
<thead>
<tr>
<th>Chapter 12: Reinforcement Learning</th>
<th>191</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Representing Agents and Environments</td>
<td>191</td>
</tr>
<tr>
<td>12.2 Q Learning</td>
<td>197</td>
</tr>
<tr>
<td>12.3 Model-based Reinforcement Learner</td>
<td>200</td>
</tr>
<tr>
<td>12.4 Reinforcement Learning with Features</td>
<td>202</td>
</tr>
<tr>
<td>12.5 Learning to coordinate - UNFINISHED!!!!</td>
<td>208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13: Relational Learning</th>
<th>209</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Collaborative Filtering</td>
<td>209</td>
</tr>
</tbody>
</table>

| Index | 217 |
Chapter 1

Python for Artificial Intelligence

1.1 Why Python?

We use Python because Python programs can be close to pseudo-code. It is designed for humans to read.

Python is reasonably efficient. Efficiency is usually not a problem for small examples. If your Python code is not efficient enough, a general procedure to improve it is to find out what is taking most the time, and implement just that part more efficiently in some lower-level language. Most of these lower-level languages interoperate with Python nicely. This will result in much less programming and more efficient code (because you will have more time to optimize) than writing everything in a low-level language. You will not have to do that for the code here if you are using it for course projects.

1.2 Getting Python

You need Python 3 (http://python.org/) and matplotlib (http://matplotlib.org/) that runs with Python 3. This code is not compatible with Python 2 (e.g., with Python 2.7).

Download and install the latest Python 3 release from http://python.org/. This should also install pip3. You can install matplotlib using

```
pip3 install matplotlib
```

in a terminal shell (not in Python). That should “just work”. If not, try using pip instead of pip3.

The command python or python3 should then start the interactive python shell. You can quit Python with a control-D or with quit().
To upgrade matplotlib to the latest version (which you should do if you install a new version of Python) do:

```bash
pip3 install --upgrade matplotlib
```

We recommend using the enhanced interactive python ipython (http://ipython.org/). To install ipython after you have installed python do:

```bash
pip3 install ipython
```

1.3 Running Python

We assume that everything is done with an interactive Python shell. You can either do this with an IDE, such as IDLE that comes with standard Python distributions, or just running ipython3 (or perhaps just ipython) from a shell.

Here we describe the most simple version that uses no IDE. If you download the zip file, and cd to the “aipython” folder where the .py files are, you should be able to do the following, with user input following:

```bash
$ ipython3 -i searchGeneric.py
```

Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 05:52:31)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.
Testing problem 1:
7 paths have been expanded and 4 paths remain in the frontier
Path found: a --> b --> c --> d --> g
Passed unit test

In [1]: searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) #A*

In [2]: searcher2.search() # find first path
16 paths have been expanded and 5 paths remain in the frontier
Out[2]: o103 --> o109 --> o119 --> o123 --> r123

In [3]: searcher2.search() # find next path
21 paths have been expanded and 6 paths remain in the frontier
Out[3]: o103 --> b3 --> b4 --> o109 --> o119 --> o123 --> r123

In [4]: searcher2.search() # find next path
28 paths have been expanded and 5 paths remain in the frontier
Out[4]: o103 --> b3 --> b1 --> b2 --> b4 --> o109 --> o119 --> o123 --> r123

In [5]: searcher2.search() # find next path
No (more) solutions. Total of 33 paths expanded.
1.4 Pitfalls

It is important to know when side effects occur. Often AI programs consider what would happen or what may have happened. In many such cases, we don’t want side effects. When an agent acts in the world, side effects are appropriate.

In Python, you need to be careful to understand side effects. For example, the inexpensive function to add an element to a list, namely append, changes the list. In a functional language like Lisp, adding a new element to a list, without changing the original list, is a cheap operation. For example if \(x \) is a list containing \(n \) elements, adding an extra element to the list in Python (using append) is fast, but it has the side effect of changing the list \(x \). To construct a new list that contains the elements of \(x \) plus a new element, without changing the value of \(x \), entails copying the list, or using a different representation for lists. In the searching code, we will use a different representation for lists for this reason.

1.5 Features of Python

1.5.1 Lists, Tuples, Sets, Dictionaries and Comprehensions

We make extensive uses of lists, tuples, sets and dictionaries (dicts). See https://docs.python.org/3/library/stdtypes.html

One of the nice features of Python is the use of list comprehensions (and also tuple, set and dictionary comprehensions).

\[
(fe \text{ for } e \text{ in } iter \text{ if } cond)
\]

enumerates the values \(fe \) for each \(e \) in \(iter \) for which \(cond \) is true. The “if cond” part is optional, but the “for” and “in” are not optional. Here \(e \) has to be a variable, \(iter \) is an iterator, which can generate a stream of data, such as a list, a set, a range object (to enumerate integers between ranges) or a file. \(cond \)
is an expression that evaluates to either True or False for each \(e \), and \(fe \) is an expression that will be evaluated for each value of \(e \) for which \(cond \) returns True.

The result can go in a list or used in another iteration, or can be called directly using \(\text{next} \). The procedure \(\text{next} \) takes an iterator returns the next element (advancing the iterator) and raises a \text{StopIteration} exception if there is no next element. The following shows a simple example, where user input is prepended with >>>

```python
>>> [e*e for e in range(20) if e%2==0]
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
>>> a = (e*e for e in range(20) if e%2==0)
>>> next(a)
0
>>> next(a)
4
>>> next(a)
16
>>> list(a)
[36, 64, 100, 144, 196, 256, 324]
>>> next(a)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
```

Notice how \(\text{list}(a) \) continued on the enumeration, and got to the end of it.

Comprehensions can also be used for dictionaries. The following code creates an index for list \(a \):

```python
>>> a = ['a','f','bar','b','a','aaaaa']
>>> ind = {a[i]:i for i in range(len(a))}
>>> ind
{'a': 4, 'f': 1, 'bar': 2, 'b': 3, 'aaaaa': 5}
>>> ind['b']
3
```

which means that ‘b’ is the 3rd element of the list.

The assignment of \(ind \) could have also be written as:

```python
>>> ind = {val:i for (i,val) in enumerate(a)}
```

where \(\text{enumerate} \) returns an iterator of \((index, value) \) pairs.

1.5.2 Functions as first-class objects

Python can create lists and other data structures that contain functions. There is an issue that tricks many newcomers to Python. For a local variable in a function, the function uses the last value of the variable when the function is
1.5. Features of Python

called, not the value of the variable when the function was defined (this is called “late binding”). This means if you want to use the value a variable has when the function is created, you need to save the current value of that variable. Whereas Python uses “late binding” by default, the alternative that newcomers often expect is “early binding”, where a function uses the value a variable had when the function was defined, can be easily implemented.

Consider the following programs designed to create a list of 5 functions, where the \(i \)th function in the list is meant to add \(i \) to its argument:\footnote{Numbered lines are Python code available in the code-directory, aipython. The name of the file is given in the gray text above the listing. The numbers correspond to the line numbers in that file.}

```
fun_list1 = []
for i in range(5):
    def fun1(e):
        return e+i
    fun_list1.append(fun1)

fun_list2 = []
for i in range(5):
    def fun2(e, iv=i):
        return e+iv
    fun_list2.append(fun2)

fun_list3 = [lambda e: e+i for i in range(5)]

fun_list4 = [lambda e, iv=i: e+iv for i in range(5)]
```

Try to predict, and then test to see the output, of the output of the following calls, remembering that the function uses the latest value of any variable that is not bound in the function call:

```
# in Shell do
## ipython -i pythonDemo.py
# Try these (copy text after the comment symbol and paste in the Python prompt):
# print([f(10) for f in fun_list1])
# print([f(10) for f in fun_list2])
# print([f(10) for f in fun_list3])
# print([f(10) for f in fun_list4])
```

In the first for-loop, the function \(\text{fun} \) uses \(i \), whose value is the last value it was assigned. In the second loop, the function \(\text{fun2} \) uses \(iv \). There is a separate \(iv \) variable for each function, and its value is the value of \(i \) when the function was defined. Thus \(\text{fun1} \) uses late binding, and \(\text{fun2} \) uses early binding. \(\text{fun_list3} \) and \(\text{fun_list4} \) are equivalent to the first two (except \(\text{fun_list4} \) uses a different \(i \) variable).

\footnote{Numbered lines are Python code available in the code-directory, aipython. The name of the file is given in the gray text above the listing. The numbers correspond to the line numbers in that file.}

http://aipython.org

Version 0.7.7
August 8, 2019
1. Python for Artificial Intelligence

One of the advantages of using the embedded definitions (as in \texttt{fun1} and \texttt{fun2} above) over the lambda is that it is possible to add a \texttt{__doc__} string, which is the standard for documenting functions in Python, to the embedded definitions.

1.5.3 Generators and Coroutines

Python has generators which can be used for a form of coroutines. The \texttt{yield} command returns a value that is obtained with \texttt{next}. It is typically used to enumerate the values for a \texttt{for} loop or in generators.

A version of the built-in \texttt{range}, with 2 or 3 arguments (and positive steps) can be implemented as:

```python
37 def myrange(start, stop, step=1):
38     """enumerates the values from start in steps of size step that are
39     less than stop."
40     assert step>0, "only positive steps implemented in myrange"
41     i = start
42     while i<stop:
43         yield i
44         i += step
45 46 print("myrange(2,30,3):", list(myrange(2,30,3)))
```

Note that the built-in \texttt{range} is unconventional in how it handles a single argument, as the single argument acts as the second argument of the function. Note also that the built-in range also allows for indexing (e.g., \texttt{range(2,30,3)[2]} returns 8), which the above implementation does not. However \texttt{myrange} also works for floats, which the built-in range does not.

\textbf{Exercise 1.1} Implement a version of \texttt{myrange} that acts like the built-in version when there is a single argument. (Hint: make the second argument have a default value that can be recognized in the function.)

Yield can be used to generate the same sequence of values as in the example of Section 1.5.1.

```python
49 def ga(n):
50     """generates square of even nonnegative integers less than n""
51     for e in range(n):
52         if e%2==0:
53             yield e*e
54 a = ga(20)
```

The sequence of \texttt{next(a)}, and \texttt{list(a)} gives exactly the same results as the comprehension in Section 1.5.1.

\url{http://aipython.org}
1.6. Useful Libraries

1.6.1 Timing Code

In order to compare algorithms, we often want to compute how long a program takes; this is called the runtime of the program. The most straightforward way to compute runtime is to use `time.perf_counter()`, as in:

```python
import time
start_time = time.perf_counter()
compute_for_a_while()
end_time = time.perf_counter()
print("Time: ", end_time - start_time, "seconds")
```

If this time is very small (say less than 0.2 second), it is probably very inaccurate, and it may be better to run your code many times to get a more accurate count. For this you can use `timeit` (https://docs.python.org/3/library/timeit.html). To use `timeit` to time the call to `foo.bar(aaa)` use:

```python
import timeit
time = timeit.timeit("foo.bar(aaa)",
                    setup="from __main__ import foo,aaa", number=100)
```

The setup is needed so that Python can find the meaning of the names in the string that is called. This returns the number of seconds to execute `foo.bar(aaa)` 100 times. The variable `number` should be set so that the runtime is at least 0.2 seconds.

You should not trust a single measurement as that can be confounded by interference from other processes. `timeit.repeat` can be used for running `timeit` a few (say 3) times. Usually the minimum time is the one to report, but you should be explicit and explain what you are reporting.

1.6.2 Plotting: Matplotlib

The standard plotting for Python is matplotlib (http://matplotlib.org/). We will use the most basic plotting using the pyplot interface.

Here is a simple example that uses everything we will use.
```python
import matplotlib.pyplot as plt

def myplot(min, max, step, fun1, fun2):
    plt.ion()  # make it interactive
    plt.xlabel("The x axis")
    plt.ylabel("The y axis")
    plt.xscale('linear')  # Makes a 'log' or 'linear' scale
    xvalues = range(min, max, step)
    plt.plot(xvalues, [fun1(x) for x in xvalues],
             label="The first fun")
    plt.plot(xvalues, [fun2(x) for x in xvalues], linestyle='--', color='k',
             label=fun2.__doc__)  # use the doc string of the function
    plt.legend(loc="upper right")  # display the legend

def slin(x):
    """y=2x+7""
    return 2*x+7

def sqfun(x):
    """y=(x-40)^2/10-20""
    return (x-40)**2/10-20

# Try the following:
# from pythonDemo import myplot, slin, sqfun
# import matplotlib.pyplot as plt
# myplot(0,100,1,slin,sqfun)
# plt.legend(loc="best")
# import math
# plt.plot([41+40*math.cos(th/10) for th in range(50)],
#           [100+100*math.sin(th/10) for th in range(50)])
# plt.text(40,100,"ellipse?")
# plt.xscale('log')
```

At the end of the code are some commented-out commands you should try in interactive mode. Cut from the file and paste into Python (and remember to remove the comments symbol and leading space).

1.7 Utilities

1.7.1 Display

In this distribution, to keep things simple and to only use standard Python, we use a text-oriented tracing of the code. A graphical depiction of the code could override the definition of display (but we leave it as a project).

The method `self.display` is used to trace the program. Any call

```python
self.display(level, to_print ...)
```

http://aipython.org
where the level is less than or equal to the value for \texttt{max_display_level} will be printed. The \texttt{to_print...} can be anything that is accepted by the built-in \texttt{print} (including any keyword arguments).

The definition of \texttt{display} is:

\begin{verbatim}
class Displayable(object):
 """Class that uses 'display'.
 The amount of detail is controlled by max_display_level"
 max_display_level = 1 # can be overridden in subclasses

 def display(self, level, *args, **nargs):
 """print the arguments if level is less than or equal to the
 current max_display_level.
 level is an integer.
 the other arguments are whatever arguments print can take.
 """
 if level <= self.max_display_level:
 print(*args, **nargs) #if error you are using Python2 not Python3
\end{verbatim}

Note that \texttt{args} gets a tuple of the positional arguments, and \texttt{nargs} gets a dictionary of the keyword arguments. This will not work in Python 2, and will give an error.

Any class that wants to use \texttt{display} can be made a subclass of \texttt{Displayable}. To change the maximum display level to say 3, for a class do:

\texttt{Classname.max_display_level = 3}

which will make calls to \texttt{display} in that class print when the value of \texttt{level} is less than-or-equal to 3. The default display level is 1. It can also be changed for individual objects (the object value overrides the class value).

The value of \texttt{max_display_level} by convention is:

\begin{itemize}
 \item \textbf{0} display nothing
 \item \textbf{1} display solutions (nothing that happens repeatedly)
 \item \textbf{2} also display the values as they change (little detail through a loop)
 \item \textbf{3} also display more details
 \item \textbf{4 and above} even more detail
\end{itemize}

In order to implement more sophisticated visualizations of the algorithm, we add a \texttt{visualize} "decorator" to the methods to be visualized. The following code ignores the decorator:

\begin{verbatim}
def visualize(func):
 http://aipython.org
\end{verbatim}

http://aipython.org
1. Python for Artificial Intelligence

1.7.2 Argmax

Python has a built-in max function that takes a generator (or a list or set) and returns the maximum value. The argmax method returns the index of an element that has the maximum value. If there are multiple elements with the maximum value, one if the indexes to that value is returned at random. This assumes a generator of (element, value) pairs, as for example is generated by the built-in enumerate.

```python
import random

def argmax(gen):
    """gen is a generator of (element,value) pairs, where value is a real.
    argmax returns an element with maximal value.
    If there are multiple elements with the max value, one is returned at random.
    ""
    maxv = float('-Infinity')  # negative infinity
    maxvals = []  # list of maximal elements
    for (e,v) in gen:
        if v>maxv:
            maxvals,maxv = [e], v
        elif v==maxv:
            maxvals.append(e)
    return random.choice(maxvals)
```

Exercise 1.3 Change argmax to have an optional argument that specifies whether you want the “first”, “last” or a “random” index of the maximum value returned. If you want the first or the last, you don’t need to keep a list of the maximum elements.

1.7.3 Probability

For many of the simulations, we want to make a variable True with some probability. flip(p) returns True with probability p, and otherwise returns False.

```python
def flip(prob):
    """return true with probability prob"
    return random.random() < prob
```

http://aipython.org Version 0.7.7 August 8, 2019
1.7.4 Dictionary Union

The function `dict_union(d1, d2)` returns the union of dictionaries `d1` and `d2`. If the values for the keys conflict, the values in `d2` are used. This is similar to `dict(d1, **d2)`, but that only works when the keys of `d2` are strings.

```
def dict_union(d1, d2):
    """returns a dictionary that contains the keys of d1 and d2.
    The value for each key that is in d2 is the value from d2,
    otherwise it is the value from d1.
    This does not have side effects.
    """
    d = dict(d1)  # copy d1
    d.update(d2)
    return d
```

1.8 Testing Code

It is important to test code early and test it often. We include a simple form of unit test. The value of the current module is in `__name__` and if the module is run at the top-level, it’s value is "__main__". See https://docs.python.org/3/library/__main__.html.

The following code tests `argmax` and `dict_union`, but only when if `utilities` is loaded in the top-level. If it is loaded in a module the test code is not run.

In your code you should do more substantial testing than we do here, in particular testing the boundary cases.

```
def test():
    """Test part of utilities""
    assert argmax(enumerate([1,6,55,3,55,23])) in [2,4]
    assert dict_union({1:4, 2:5, 3:4},{5:7, 2:9}) == {1:4, 2:9, 3:4, 5:7}
    print("Passed unit test in utilities")

if __name__ == "__main__":
    test()
```

http://aipython.org
Chapter 2

Agents and Control

This implements the controllers described in Chapter 2.

In this version the higher-levels call the lower-levels. A more sophisticated version may have them run concurrently (either as coroutines or in parallel). The higher-levels calling the lower-level works in simulated environments when there is a single agent, and where the lower-level are written to make sure they return (and don’t go on forever), and the higher level doesn’t take too long (as the lower-levels will wait until called again).

2.1 Representing Agents and Environments

An agent observes the world, and carries out actions in the environment, it also has an internal state that it updates. The environment takes in actions of the agents, updates it internal state and returns the percepts.

In this implementation, the state of the agent and the state of the environment are represented using standard Python variables, which are updated as the state changes. The percepts and the actions are represented as variable-value dictionaries.

An agent implements the `go(n)` method, where `n` is an integer. This means that the agent should run for `n` time steps.

In the following code `raise NotImplementedError()` is a way to specify an abstract method that needs to be overridden in any implemented agent or environment.

```python
import random

class Agent(object):
    def __init__(self, env):
```

11 | import random
12 | class Agent(object):
13 | def __init__(self, env):
14 |
19 |
```
2. Agents and Control

"""set up the agent""

self.env=env

def go(self,n):
    """acts for n time steps""
    raise NotImplementedError("go") # abstract method

The environment implements a do(action) method where action is a variable-value dictionary. This returns a percept, which is also a variable-value dictionary. The use of dictionaries allows for structured actions and percepts.

Note that Environment is a subclass of Displayable so that it can use the display method described in Section 1.7.1.

agents.py — (continued)

from display import Displayable
class Environment(Displayable):
    def initial_percepts(self):
        """returns the initial percepts for the agent""
        raise NotImplementedError("initial_percepts") # abstract method

    def do(self,action):
        """does the action in the environment
        returns the next percept"
        raise NotImplementedError("do") # abstract method

2.2 Paper buying agent and environment

To run the demo, in folder "aipython", load "agents.py", using e.g.,
ipython -i agents.py, and copy and paste the commented-out
commands at the bottom of that file. This requires Python 3 with
matplotlib.

This is an implementation of the paper buying example.

2.2.1 The Environment

The environment state is given in terms of the time and the amount of paper in
stock. It also remembers the in-stock history and the price history. The percepts
are the price and the amount of paper in stock. The action of the agent is the
number to buy.

Here we assume that the prices are obtained from the prices list plus a ran-
dom integer in range \([0, \text{max price addon})\) plus a linear "inflation". The agent
cannot access the price model; it just observes the prices and the amount in
stock.

agents.py — (continued)

class TP_env(Environment):

http://aipython.org  Version 0.7.7  August 8, 2019
2.2. Paper buying agent and environment

```python
prices = [234, 234, 234, 234, 255, 255, 275, 275, 211, 211, 211,
 234, 234, 234, 234, 199, 199, 275, 275, 234, 234, 234, 234, 255,
 255, 260, 260, 265, 265, 265, 270, 270, 255, 255, 260, 260, 265,
 265, 265, 270, 270, 211, 211, 211, 255, 255, 260, 260, 265, 265,
 260, 265, 270, 270, 205, 255, 255, 260, 260, 265, 265, 265, 265,
 270, 270]
max_price_addon = 20 # maximum of random value added to get price

def __init__(self):
 """paper buying agent""
 self.time=0
 self.stock=20
 self.stock_history = [] # memory of the stock history
 self.price_history = [] # memory of the price history

def initial_percepts(self):
 """return initial percepts"
 self.stock_history.append(self.stock)
 price = self.prices[0]+random.randrange(self.max_price_addon)
 self.price_history.append(price)
 return {'price': price,
 'instock': self.stock}

def do(self, action):
 """does action (buy) and returns percepts (price and instock)"
 used = pick_from_dist({6:0.1, 5:0.1, 4:0.2, 3:0.3, 2:0.2, 1:0.1})
 bought = action['buy']
 self.stock = self.stock+bought-used
 self.stock_history.append(self.stock)
 self.time += 1
 price = (self.prices[self.time%len(self.prices)] # repeating pattern
 +random.randrange(self.max_price_addon) # plus randomness
 +self.time//2) # plus inflation
 self.price_history.append(price)
 return {'price': price,
 'instock': self.stock}
```

The `pick_from_dist` method takes in a `item : probability` dictionary, and returns one of the items in proportion to its probability.

```python
def pick_from_dist(item_prob_dist):
 """ returns a value from a distribution.
 item_prob_dist is an item:probability dictionary, where the
 probabilities sum to 1.
 returns an item chosen in proportion to its probability
 ""
 ranreal = random.random()
 for (it,prob) in item_prob_dist.items():
 if ranreal < prob:
```

http://aipython.org  Version 0.7.7  August 8, 2019
2. Agents and Control

2.2.2 The Agent

The agent does not have access to the price model but can only observe the current price and the amount in stock. It has to decide how much to buy.

The belief state of the agent is an estimate of the average price of the paper, and the total amount of money the agent has spent.

```python
class TP_agent(Agent):
 def __init__(self, env):
 self.env = env
 self.spent = 0
 percepts = env.initial_percepts()
 self.ave = self.last_price = percepts['price']
 self.instock = percepts['instock']

 def go(self, n):
 """go for n time steps
 ""
 for i in range(n):
 if self.last_price < 0.9*self.ave and self.instock < 60:
 tobuy = 48
 elif self.instock < 12:
 tobuy = 12
 else:
 tobuy = 0
 self.spent += tobuy*self.last_price
 percepts = env.do({'buy': tobuy})
 self.last_price = percepts['price']
 self.ave = self.ave+(self.last_price-self.ave)*0.05
 self.instock = percepts['instock']
```

Set up an environment and an agent. Uncomment the last lines to run the agent for 90 steps, and determine the average amount spent.

```python
env = TP_env()
ag = TP_agent(env)
#ag.go(90)
#ag.spent/env.time ## average spent per time period
```

2.2.3 Plotting

The following plots the price and number in stock history:

http://aipython.org
2.3 Hierarchical Controller

```python
import matplotlib.pyplot as plt

class Plot_prices(object):
 """Set up the plot for history of price and number in stock""
 def __init__(self, ag, env):
 self.ag = ag
 self.env = env
 plt.ion()
 plt.xlabel("Time")
 plt.ylabel("Number in stock. Price.")
 def plot_run(self):
 """plot history of price and instock""
 num = len(env.stock_history)
 plt.plot(range(num), env.stock_history, label="In stock")
 plt.plot(range(num), env.price_history, label="Price")
 #plt.legend(loc="upper left")
 plt.draw()

pl = Plot_prices(ag, env)
ag.go(90); pl.plot_run()
```

2.3 Hierarchical Controller

To run the hierarchical controller, in folder "aipython", load "agentTop.py", using e.g., `ipython -i agentTop.py`, and copy and paste the commands near the bottom of that file. This requires Python 3 with matplotlib.

In this implementation, each layer, including the top layer, implements the environment class, because each layer is seen as an environment from the layer above.

We arbitrarily divide the environment and the body, so that the environment just defines the walls, and the body includes everything to do with the agent. Note that the named locations are part of the (top-level of the) agent, not part of the environment, although they could have been.

2.3.1 Environment

The environment defines the walls.

```python
import math
from agents import Environment

class Rob_env(Environment):

http://aipython.org
```
2. Agents and Control

2.3.2 Body

The body defines everything about the agent body.

```python
import math
from agents import Environment
import matplotlib.pyplot as plt
import time

class Rob_body(Environment):
 def __init__(self, env, init_pos=(0,0,90)):
 """ env is the current environment
 init_pos is a triple of (x-position, y-position, direction)
 direction is in degrees; 0 is to right, 90 is straight-up, etc
 ""
 self.env = env
 self.rob_x, self.rob_y, self.rob_dir = init_pos
 self.turning_angle = 18 # degrees that a left makes
 self.whisker_length = 6 # length of the whisker
 self.whisker_angle = 30 # angle of whisker relative to robot
 self.crashed = False
 # The following control how it is plotted
 self.plotting = True # whether the trace is being plotted
 self.sleep_time = 0.05 # time between actions (for real-time plotting)
 # The following are data structures maintained:
 self.history = [(self.rob_x, self.rob_y)] # history of (x,y) positions
 self.wall_history = [] # history of hitting the wall

 def percepts(self):
 return {'rob_x_pos':self.rob_x, 'rob_y_pos':self.rob_y,
 'rob_dir':self.rob_dir, 'whisker':self.whisker(), 'crashed':self.crashed}

 def do(self, action):
 """ action is { 'steer':direction}
 direction is 'left', 'right' or 'straight'
 ""
 if self.crashed:
 return self.percepts()
 direction = action['steer']
 compass_deriv = {'left':1,'straight':0,'right':-1}[direction]*self.turning_angle
 self.rob_dir = (self.rob_dir + compass_deriv +360)%360 # make in range [0,360)
 rob_x_new = self.rob_x + math.cos(self.rob_dir*math.pi/180)
```

http://aipython.org
rob_y_new = self.rob_y + math.sin(self.rob_dir*math.pi/180)
path = ((self.rob_x, self.rob_y), (rob_x_new, rob_y_new))
if any(line_segments_intersect(path, wall) for wall in self.env.walls):
    self.crashed = True
    if self.plotting:
        plt.plot([self.rob_x],[self.rob_y],"*", markersize=20.0)
        plt.draw()
self.rob_x, self.rob_y = rob_x_new, rob_y_new
self.history.append((self.rob_x, self.rob_y))
if self.plotting and not self.crashed:
    plt.plot([self.rob_x],[self.rob_y],"g")
    plt.draw()
    plt.pause(self.sleep_time)
return self.percepts()

This detects if the whisker and the wall intersect. It's value is returned as a percept.

def whisker(self):
    """returns true whenever the whisker sensor intersects with a wall
    """
    whisk_ang_world = (self.rob_dir-self.whisker_angle)*math.pi/180
    # angle in radians in world coordinates
    wx = self.rob_x + self.whisker_length * math.cos(whisk_ang_world)
    wy = self.rob_y + self.whisker_length * math.sin(whisk_ang_world)
    whisker_line = ((self.rob_x, self.rob_y), (wx, wy))
    hit = any(line_segments_intersect(whisker_line, wall)
              for wall in self.env.walls)
    if hit:
        self.wall_history.append((self.rob_x, self.rob_y))
        if self.plotting:
            plt.plot([self.rob_x], [self.rob_y], "ro")
            plt.draw()
    return hit

def line_segments_intersect(linea, lineb):
    """returns true if the line segments, linea and lineb intersect.
    A line segment is represented as a pair of points.
    A point is represented as a (x,y) pair.
    """
    ((x0a, y0a), (x1a, y1a)) = linea
    ((x0b, y0b), (x1b, y1b)) = lineb
da, db = x1a-x0a, x1b-x0b
ea, eb = y1a-y0a, y1b-y0b
denom = db*ea-eb*da
if denom==0:  # line segments are parallel
    return False
cb = (da*(y0b-y0a)-ea*(x0b-x0a))/denom # position along line b
if cb<0 or cb>1:
    return False
\[ ca = \frac{dyb - y0a}{eb(x0b - x0a)} \] position along line a

return 0<=ca<=1

# Test cases:
# assert line_segments_intersect(((0,0),(1,1)),((1,0),(0,1)))
# assert not line_segments_intersect(((0,0),(1,1)),((1,0),(0.6,0.4)))
# assert line_segments_intersect(((0,0),(1,1)),((1,0),(0.4,0.6)))

## Middle Layer

The middle layer acts like both a controller (for the environment layer) and an environment for the upper layer. It has to tell the environment how to steer. Thus it calls \texttt{env.do(\cdot)}. It also is told the position to go to and the timeout. Thus it also has to implement \texttt{do(\cdot)}.

```python
from agents import Environment
import math

class Rob_middle_layer(Environment):
 def __init__(self, env):
 self.env = env
 self.percepts = env.initial_percepts()
 self.straight_angle = 11 # angle that is close enough to straight ahead
 self.close_threshold = 2 # distance that is close enough to arrived
 self.close_threshold_squared = self.close_threshold**2 # just compute it once

 def initial_percepts(self):
 return {}

 def do(self, action):
 """action is {'go_to':target_pos,'timeout':timeout}
 target_pos is (x,y) pair
 timeout is the number of steps to try
 returns {'arrived':True} when arrived is true
 or {'arrived':False} if it reached the timeout
 ""
 if 'timeout' in action:
 remaining = action['timeout']
 else:
 remaining = -1 # will never reach 0
 target_pos = action['go_to']
 arrived = self.close_enough(target_pos)
 while not arrived and remaining != 0:
 self.percepts = self.env.do("steer":self.steer(target_pos))
 remaining -= 1
 arrived = self.close_enough(target_pos)
 return {'arrived': arrived}
```
This determines how to steer depending on whether the goal is to the right or the left of where the robot is facing:

```python
def steer(self, target_pos):
 if self.percepts['whisker']:
 self.display(3, 'whisker on', self.percepts)
 return "left"
 else:
 gx, gy = target_pos
 rx, ry = self.percepts['rob_x_pos'], self.percepts['rob_y_pos']
 goal_dir = math.acos((gx-rx)/math.sqrt((gx-rx)*(gx-rx) + (gy-ry)*(gy-ry)))*180/math.pi
 if ry > gy:
 goal_dir = -goal_dir
 goal_from_rob = (goal_dir - self.percepts['rob_dir'] + 540)%360-180
 assert -180 < goal_from_rob <= 180
 if goal_from_rob > self.straight_angle:
 return "left"
 elif goal_from_rob < -self.straight_angle:
 return "right"
 else:
 return "straight"
```

2.3.4 Top Layer

The top layer treats the middle layer as its environment. Note that the top layer is an environment for us to tell it what to visit.

```python
from agentMiddle import Rob_middle_layer
from agents import Environment

class Rob_top_layer(Environment):
 def __init__(self, middle, timeout=200, locations = {'mail':(-5,10),
 'o103':(50,10), 'o109':(100,10), 'storage':(101,51)}):

 self.middle = middle
 self.timeout = timeout # number of steps before the middle layer should give up
 self.locations = locations
```

[http://aipython.org](http://aipython.org)  |  Version 0.7.7  |  August 8, 2019
def do(self, plan):
    """carry out actions.
    actions is of the form {'visit': list_of_locations}
    It visits the locations in turn.
    """
    to_do = plan['visit']
    for loc in to_do:
        position = self.locations[loc]
        arrived = self.middle.do({'go_to': position, 'timeout': self.timeout})
        self.display(1, "Arrived at", loc, arrived)

2.3.5 Plotting

The following is used to plot the locations, the walls and (eventually) the movement of the robot. It can either plot the movement if the robot as it is going (with the default env.plotting = True), or not plot it as it is going (setting env.plotting = False; in this case the trace can be plotted using pl.plot_run()).

```python
import matplotlib.pyplot as plt

class Plot_env(object):
 def __init__(self, body, top):
 """sets up the plot
 """
 self.body = body
 plt.ion()
 plt.clf()
 plt.axes().set_aspect('equal')
 for wall in body.env.walls:
 ((x0, y0), (x1, y1)) = wall
 plt.plot([x0, x1], [y0, y1], "-k", linewidth=3)
 for loc in top.locations:
 (x, y) = top.locations[loc]
 plt.plot([x], [y], "k<")
 plt.text(x+1.0, y+0.5, loc) # print the label above and to the right
 plt.plot([body.rob_x], [body.rob_y], "go")
 plt.draw()

 def plot_run(self):
 """plots the history after the agent has finished.
 This is typically only used if body.plotting==False
 """
 xs, ys = zip(*self.body.history)
 plt.plot(xs, ys, "go")
 wxs, wys = zip(*self.body.wall_history)
 plt.plot(wxs, wys, "ro")
 #plt.draw()
```

The following code plots the agent as it acts in the world:

[http://aipython.org](http://aipython.org)
2.3. Hierarchical Controller

```python
from agentEnv import Rob_body, Rob_env

env = Rob_env(((20,0),(30,20)), ((70,-5),(70,25)))
body = Rob_body(env)
middle = Rob_middle_layer(body)
top = Rob_top_layer(middle)

try:
pl = Plot_env(body, top)
top.do({'visit': ['o109', 'storage', 'o109', 'o103']})
You can directly control the middle layer:
middle.do('go_to': (30, -10), 'timeout': 200)
Can you make it crash?
```

**Exercise 2.1** The following code implements a robot trap. Write a controller that can escape the “trap” and get to the goal. See textbook for hints.

```python
Robot Trap for which the current controller cannot escape:
trap_env = Rob_env(((10,-21),(10,0)), ((10,10),(10,31)), ((30,-10),(30,0)),
 ((30,10),(30,20)), ((50,-21),(50,31)), ((10,-21),(50,-21)),
 ((10,0),(30,0)), ((10,10),(30,10)), ((10,31),(50,31))))
trap_body = Rob_body(trap_env, init_pos=(-1,0,90))
trap_middle = Rob_middle_layer(trap_body)
trap_top = Rob_top_layer(trap_middle, locations={'goal': (71,0)})

Robot trap exercise:
pl = Plot_env(trap_body, trap_top)
trap_top.do({'visit': ['goal']})
```
3.1 Representing Search Problems

A search problem consists of:

- a start node
- a neighbors function that given a node, returns an enumeration of the arcs from the node
- a specification of a goal in terms of a Boolean function that takes a node and returns true if the node is a goal
- a (optional) heuristic function that, given a node, returns a non-negative real number. The heuristic function defaults to zero.

As far as the searcher is concerned a node can be anything. If multiple-path pruning is used, a node must be hashable. In the simple examples, it is a string, but in more complicated examples (in later chapters) it can be a tuple, a frozen set, or a Python object.

In the following code `raise NotImplementedError()` is a way to specify that this is an abstract method that needs to be overridden to define an actual search problem.

```python
class Search_problem(object):
 """A search problem consists of:
 * a start node
 * a neighbors function that gives the neighbors of a node
 * a specification of a goal
 * a (optional) heuristic function.
```
The methods must be overridden to define a search problem.

```python
def start_node(self):
 """returns start node""
 raise NotImplementedError("start_node") # abstract method

def is_goal(self, node):
 """is True if node is a goal""
 raise NotImplementedError("is_goal") # abstract method

def neighbors(self, node):
 """returns a list of the arcs for the neighbors of node""
 raise NotImplementedError("neighbors") # abstract method

def heuristic(self, n):
 """Gives the heuristic value of node n. Returns 0 if not overridden.""
 return 0
```

The neighbors is a list of arcs. A (directed) arc consists of a `from_node` node and a `to_node` node. The arc is the pair `(from_node, to_node)`, but can also contain a non-negative `cost` (which defaults to 1) and can be labeled with an `action`.

```python
class Arc(object):
 """An arc has a from_node and a to_node node and a (non-negative) cost""
 def __init__(self, from_node, to_node, cost=1, action=None):
 assert cost >= 0, ("Cost cannot be negative for" +
 str(from_node) + "->" + str(to_node) +", cost: " + str(cost))
 self.from_node = from_node
 self.to_node = to_node
 self.action = action
 self.cost = cost

 def __repr__(self):
 """string representation of an arc""
 if self.action:
 return str(self.from_node) + "--" + str(self.action) + "--> " + str(self.to_node)
 else:
 return str(self.from_node) + "--> " + str(self.to_node)
```

### 3.1.1 Explicit Representation of Search Graph

The first representation of a search problem is from an explicit graph (as opposed to one that is generated as needed).

An **explicit graph** consists of
- a list or set of nodes
- a list or set of arcs

http://aipython.org
3.1. Representing Search Problems

- a start node
- a list or set of goal nodes
- (optionally) a dictionary that maps a node to a heuristic value for that node

To define a search problem, we need to define the start node, the goal predicate, the neighbors function and the heuristic function.

```python
class Search_problem_from_explicit_graph(Search_problem):
 """A search problem consists of:
 * a list or set of nodes
 * a list or set of arcs
 * a start node
 * a list or set of goal nodes
 * a dictionary that maps each node into its heuristic value.
 ""

 def __init__(self, nodes, arcs, start=None, goals=set(), hmap={}):
 self.neighs = {}
 self.nodes = nodes
 for node in nodes:
 self.neighs[node]=[]
 self.arcs = arcs
 for arc in arcs:
 self.neighs[arc.from_node].append(arc)
 self.start = start
 self.goals = goals
 self.hmap = hmap

 def start_node(self):
 """returns start node""
 return self.start

 def is_goal(self,node):
 """is True if node is a goal"
 return node in self.goals

 def neighbors(self,node):
 """returns the neighbors of node"
 return self.neighs[node]

 def heuristic(self,node):
 """Gives the heuristic value of node n.
 Returns 0 if not overridden in the hmap."
 if node in self.hmap:
 return self.hmap[node]
 else:
 return 0
```
3. Searching for Solutions

```python
def __repr__(self):
 """returns a string representation of the search problem""
 res=""
 for arc in self.arcs:
 res += str(arc)+". "
 return res
```

The following is used for the depth-first search implementation below.

```python
def neighbor_nodes(self,node):
 """returns an iterator over the neighbors of node""
 return (path.to_node for path in self.neighs[node])
```

### 3.1.2 Paths

A searcher will return a path from the start node to a goal node. A Python list is not a suitable representation for a path, as many search algorithms consider multiple paths at once, and these paths should share initial parts of the path. If we wanted to do this with Python lists, we would need to keep copying the list, which can be expensive if the list is long. An alternative representation is used here in terms of a recursive data structure that can share subparts.

A path is either:

- a node (representing a path of length 0) or
- a path, `initial` and an arc, where the `from_node` of the arc is the node at the end of `initial`.

These cases are distinguished in the following code by having `arc = None` if the path has length 0, in which case `initial` is the node of the path.

```python
class Path(object):
 """A path is either a node or a path followed by an arc""
 def __init__(self, initial, arc=None):
 """Initial is either a node (in which case arc is None) or a path (in which case arc is an object of type Arc)""
 self.initial = initial
 self.arc = arc
 if arc is None:
 self.cost = 0
 else:
 self.cost = initial.cost + arc.cost
 def end(self):
 """Returns the node at the end of the path""
 if self.arc is None:
```

[http://aipython.org](http://aipython.org)
3.1. Representing Search Problems

```python
return self.initial
else:
 return self.arc.to_node

def nodes(self):
 """enumerates the nodes for the path.
 This starts at the end and enumerates nodes in the path backwards.""
 current = self
 while current.arc is not None:
 yield current.arc.to_node
 current = current.initial
 yield current.initial

def initial_nodes(self):
 """enumerates the nodes for the path before the end node.
 This starts at the end and enumerates nodes in the path backwards.""
 if self.arc is not None:
 for nd in self.initial.nodes(): yield nd # could be "yield from"

def __repr__(self):
 """returns a string representation of a path"
 if self.arc is None:
 return str(self.initial)
 elif self.arc.action:
 return (str(self.initial) + "\n --" + str(self.arc.action) + "--> " + str(self.arc.to_node))
 else:
 return str(self.initial) + " --> " + str(self.arc.to_node)
```

3.1.3 Example Search Problems

The first search problem is one with 5 nodes where the least-cost path is one with many arcs. See Figure 3.1. Note that this example is used for the unit tests, so the test (in searchGeneric) will need to be changed if this is changed.

```python
problem1 = Search_problem_from_explicit_graph(
 {'a','b','c','d','g'},
 [Arc('a','b',1), Arc('a','c',3), Arc('b','d',3), Arc('b','c',1),
 Arc('c','d',1), Arc('c','g',3), Arc('d','g',1)],
 start = 'a',
 goals = {'g'})
```

The second search problem is one with 8 nodes where many paths do not lead to the goal. See Figure 3.2

```python
problem2 = Search_problem_from_explicit_graph(
 {'a','b','c','d','e','g','h','j'},
 [Arc('a','b',1), Arc('b','c',3), Arc('b','d',1), Arc('d','e',3),
 Arc('e','g',1)],
 start = 'b',
 goals = {'j'})
```

http://aipython.org Version 0.7.7 August 8, 2019
3. Searching for Solutions

Figure 3.1: problem1

Figure 3.2: problem2

The third search problem is a disconnected graph (contains no arcs), where the start node is a goal node. This is a boundary case to make sure that weird cases work.

The acyclic delivery problem is the delivery problem described in Example 3.4 and shown in Figure 3.2 of the textbook.
3.1. Representing Search Problems

```python
[Arc('ts', 'mail', 6),
 Arc('o103', 'ts', 8),
 Arc('o103', 'b3', 4),
 Arc('o103', 'o109', 12),
 Arc('o109', 'o119', 16),
 Arc('o109', 'o111', 4),
 Arc('b1', 'c2', 3),
 Arc('b1', 'b2', 6),
 Arc('b2', 'b4', 3),
 Arc('b3', 'b1', 4),
 Arc('b3', 'b4', 7),
 Arc('b4', 'o109', 7),
 Arc('c1', 'c3', 8),
 Arc('c2', 'c3', 6),
 Arc('c3', 'c3', 6),
 Arc('c3', 'c1', 4),
 Arc('o123', 'o125', 4),
 Arc('o123', 'r123', 4),
 Arc('o119', 'o123', 9),
 Arc('o119', 'storage', 7)],
 start = 'o103',
goals = {'r123'},
hmap = {
 'mail' : 26,
 'ts' : 23,
 'o103' : 21,
 'o109' : 24,
 'o111' : 27,
 'o119' : 11,
 'o123' : 4,
 'o125' : 6,
 'r123' : 0,
 'b1' : 13,
 'b2' : 15,
 'b3' : 17,
 'b4' : 18,
 'c1' : 6,
 'c2' : 10,
 'c3' : 12,
 'storage' : 12
}
)

The cyclic_delivery_problem is the delivery problem described in Example 3.8 and shown in Figure 3.6 of the textbook. This is the same as acyclic_delivery_problem, but almost every arc also has its inverse.

```
Arc('o103', 'ts', 8), Arc('ts', 'o103', 8),
Arc('o103', 'b3', 4),
Arc('o103', 'o109', 12), Arc('o109', 'o103', 12),
Arc('o109', 'o119', 16), Arc('o119', 'o109', 16),
Arc('o109', 'o111', 4), Arc('o111', 'o109', 4),
Arc('b1', 'c2', 3),
Arc('b1', 'b2', 6), Arc('b2', 'b1', 6),
Arc('b2', 'b4', 3), Arc('b4', 'b2', 3),
Arc('b3', 'b1', 4), Arc('b1', 'b3', 4),
Arc('b3', 'b4', 7), Arc('b4', 'b3', 7),
Arc('b4', 'o109', 7),
Arc('c1', 'c3', 8), Arc('c3', 'c1', 8),
Arc('c2', 'c3', 6), Arc('c3', 'c2', 6),
Arc('c2', 'c1', 4), Arc('c1', 'c2', 4),
Arc('o123', 'o125', 4), Arc('o125', 'o123', 4),
Arc('o123', 'r123', 4), Arc('r123', 'o123', 4),
Arc('o119', 'o123', 9), Arc('o123', 'o119', 9),
Arc('o119', 'storage', 7), Arc('storage', 'o119', 7)],
start = 'o103',
goals = {'r123'},
hmap = {
    'mail' : 26,
    'ts' : 23,
    'o103' : 21,
    'o109' : 24,
    'o111' : 27,
    'o119' : 11,
    'o123' : 4,
    'o125' : 6,
    'r123' : 0,
    'b1' : 13,
    'b2' : 15,
    'b3' : 17,
    'b4' : 18,
    'c1' : 6,
    'c2' : 10,
    'c3' : 12,
    'storage' : 12
}
3.2.2.1 Searcher

A \textit{Searcher} for a problem can be asked repeatedly for the next path. To solve a problem, we can construct a \textit{Searcher} object for the problem and then repeatedly ask for the next path using \texttt{search}. If there are no more paths, \texttt{None} is returned.

```python
from display import Displayable, visualize
class Searcher(Displayable):
 """returns a searcher for a problem. Paths can be found by repeatedly calling search(). This does depth-first search unless overridden """
def __init__(self, problem):
 """creates a searcher from a problem """
 self.problem = problem
 self.initialize_frontier()
 self.num_expanded = 0
 self.add_to_frontier(Path(problem.start_node()))
 super().__init__()

def initialize_frontier(self):
 self.frontier = []

def empty_frontier(self):
 return self.frontier == []

def add_to_frontier(self,path):
 self.frontier.append(path)

@visualize
def search(self):
 """returns (next) path from the problem's start node to a goal node. Returns None if no path exists. """
 while not self.empty_frontier():
 path = self.frontier.pop()
 self.display(2, "Expanding: ", path, ", (cost: ", path.cost, ")")
 self.num_expanded += 1
 if self.problem.is_goal(path.end()): # solution found
 self.display(1, self.num_expanded, "paths have been expanded and",
 len(self.frontier), "paths remain in the frontier")
 self.solution = path # store the solution found
 return path
 else:
 neighs = self.problem.neighbors(path.end())
 self.display(3, "Neighbors are", neighs)
 for arc in reversed(list(neighs)):
..."""
Note that this reverses the neighbours so that it implements depth-first search in an intuitive manner (expanding the first neighbor first), and list is needed if the neighbour are generated. Reversing the neighbours might not be required for other methods. The calls to reversed and list can be removed, and the algorithm still implements depth-first search.

Exercise 3.1 When it returns a path, the algorithm can be used to find another path by calling `search()` again. However, it does not find other paths that go through one goal node to another. Explain why, and change the code so that it can find such paths when `search()` is called again.

3.2.2 Frontier as a Priority Queue

In many of the search algorithms, such as A^* and other best-first searchers, the frontier is implemented as a priority queue. Here we use the Python's built-in priority queue implementations, `heapq`.

Following the lead of the Python documentation, http://docs.python.org/3.3/library/heapq.html, a frontier is a list of triples. The first element of each triple is the value to be minimized. The second element is a unique index which specifies the order when the first elements are the same, and the third element is the path that is on the queue. The use of the unique index ensures that the priority queue implementation does not compare paths; whether one path is less than another is not defined. It also lets us control what sort of search (e.g., depth-first or breadth-first) occurs when the value to be minimized does not give a unique next path.

The variable `frontier_index` is the total number of elements of the frontier that have been created. As well as being used as a unique index, it is useful for statistics, particularly in conjunction with the current size of the frontier.

```python
    self.add_to_frontier(Path(path,arc))
    self.display(3,"Frontier:",self.frontier)
    self.display(1,"No (more) solutions. Total of",
                self.num_expanded,"paths expanded.")
```

```python
import heapq # part of the Python standard library
from searchProblem import Path

class FrontierPQ(object):
    """A frontier consists of a priority queue (heap), frontierpq, of
    (value, index, path) triples, where
    * value is the value we want to minimize (e.g., path cost + h).
    * index is a unique index for each element
    * path is the path on the queue
    Note that the priority queue always returns the smallest element.
    """
    def __init__(self):
        http://aipython.org
```
3.2. Generic Searcher and Variants

```python

    #constructs the frontier, initially an empty priority queue
    self.frontier_index = 0 # the number of items ever added to the frontier
    self.frontierpq = [] # the frontier priority queue

    def empty(self):
        """is True if the priority queue is empty"""
        return self.frontierpq == []

    def add(self, path, value):
        """add a path to the priority queue
        value is the value to be minimized"
        self.frontier_index += 1 # get a new unique index
        heapq.heappush(self.frontierpq,(value, -self.frontier_index, path))

    def pop(self):
        """returns and removes the path of the frontier with minimum value.
        ""
        (_, _, path) = heapq.heappop(self.frontierpq)
        return path

The following methods are used for finding and printing information about the frontier.

```

3.2.3 A* Search

For an A* Search the frontier is implemented using the FrontierPQ class.

```python

class AStarSearcher(Searcher):
    """returns a searcher for a problem.
    Paths can be found by repeatedly calling search().

http://aipython.org
```
3. Searching for Solutions

```python
"""

def __init__(self, problem):
    super().__init__(problem)

def initialize_frontier(self):
    self.frontier = FrontierPQ()

def empty_frontier(self):
    return self.frontier.empty()

def add_to_frontier(self, path):
    """add path to the frontier with the appropriate cost""
    value = path.cost + self.problem.heuristic(path.end())
    self.frontier.add(path, value)

Code should always be tested. The following provides a simple unit test, using problem1 as the the default problem.

import searchProblem as searchProblem

def test(SearchClass, problem=searchProblem.problem1, solution=[
    'g', 'd', 'c', 'b', 'a']):
    """Unit test for aipython searching algorithms.
    SearchClass is a class that takes a problem and implements search()
    problem is a search problem
    solution is the unique (optimal) solution.
    ""
    print("Testing problem 1:")
    schr1 = SearchClass(problem)
    path1 = schr1.search()
    print("Path found:", path1)
    assert list(path1.nodes()) == solution, "Shortest path not found in problem1"
    print("Passed unit test")

if __name__ == "__main__":
    # example queries:
    # searcher1 = Searcher(searchProblem.acyclic_delivery_problem) # DFS
    # searcher1.search() # find first path
    # searcher1.search() # find next path
    # searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) # A*
    # searcher2.search() # find first path
    # searcher2.search() # find next path
    # searcher3 = Searcher(searchProblem.cyclic_delivery_problem) # DFS
    # searcher3.search() # find first path with DFS. What do you expect to happen?
    # searcher4 = AStarSearcher(searchProblem.cyclic_delivery_problem) # A*
    # searcher4.search() # find first path

http://aipython.org  Version 0.7.7  August 8, 2019
3.2. Generic Searcher and Variants

Exercise 3.2 Change the code so that it implements (i) best-first search and (ii) lowest-cost-first search. For each of these methods compare it to \( A^* \) in terms of the number of paths expanded, and the path found.

Exercise 3.3 In the add method in FrontierPQ what does the "-" in front of frontier_index do? When there are multiple paths with the same f-value, which search method does this act like? What happens if the "-" is removed? When there are multiple paths with the same value, which search method does this act like? Does it work better with or without the "-"? What evidence did you base your conclusion on?

Exercise 3.4 The searcher acts like a Python iterator, in that it returns one value (here a path) and then returns other values (paths) on demand, but does not implement the iterator interface. Change the code so it implements the iterator interface. What does this enable us to do?

3.2.4 Multiple Path Pruning

To run the multiple-path pruning demo, in folder “aipython”, load “searchMPP.py”, using e.g., ipython -i searchMPP.py, and copy and paste the example queries at the bottom of that file.

The following implements \( A^* \) with multiple-path pruning. It overrides search() in Searcher.

```python
from searchGeneric import AStarSearcher, visualize
from searchProblem import Path

class SearcherMPP(AStarSearcher):
 """returns a searcher for a problem.
 Paths can be found by repeatedly calling search().
 """
 def __init__(self, problem):
 super().__init__(problem)
 self.explored = set()

 @visualize
 def search(self):
 """returns next path from an element of problem's start nodes
 to a goal node.
 Returns None if no path exists.
 """
 while not self.empty_frontier():
 path = self.frontier.pop()
 if path.end() not in self.explored:
 self.display(2, "Expanding:",path,("cost:",path.cost,"\n")
 self.explored.add(path.end())
 self.num_expanded += 1
 if self.problem.is_goal(path.end()):
 self.display(1, self.num_expanded, "paths have been expanded and",
```
len(self.frontier), "paths remain in the frontier")
self.solution = path # store the solution found
return path

else:
    neighs = self.problem.neighbors(path.end())
self.display(3,"Neighbors are", neighs)
    for arc in neighs:
        self.add_to_frontier(Path(path,arc))
self.display(3,"Frontier:",self.frontier)
self.display(1,"No (more) solutions. Total of",
    self.num_expanded,"paths expanded.")

from searchGeneric import test
if __name__ == "__main__":
    test(SearcherMPP)
import searchProblem
# searcherMPPcdp = SearcherMPP(searchProblem.cyclic_delivery_problem)
# print(searcherMPPcdp.search()) # find first path

Exercise 3.5 Implement a searcher that implements cycle pruning instead of multiple-path pruning. You need to decide whether to check for cycles when paths are added to the frontier or when they are removed. (Hint: either method can be implemented by only changing one or two lines in SearcherMPP.) Compare no pruning, multiple path pruning and cycle pruning for the cyclic delivery problem. Which works better in terms of number of paths expanded, computational time or space?

3.3 Branch-and-bound Search

To run the demo, in folder "aipython", load "searchBranchAndBound.py", and copy and paste the example queries at the bottom of that file.

Depth-first search methods do not need an a priority queue, but can use a list as a stack. In this implementation of branch-and-bound search, we call search to find an optimal solution with cost less than bound. This uses depth-first search to find a path to a goal that extends path with cost less than the bound. Once a path to a goal has been found, that path is remembered as the best_path, the bound is reduced, and the search continues.

class DF_branch_and_bound(Searcher):
    """returns a branch and bound searcher for a problem.

http://aipython.org
3.3. Branch-and-bound Search

An optimal path with cost less than bound can be found by calling search()

```python
def __init__(self, problem, bound=float("inf")):

 creates a searcher than can be used with search() to find an optimal path.
 bound gives the initial bound. By default this is infinite - meaning there
 is no initial pruning due to depth bound

 super().__init__(problem)
 self.best_path = None
 self.bound = bound

@visualize
def search(self):

 returns an optimal solution to a problem with cost less than bound.
 returns None if there is no solution with cost less than bound.

 self.frontier = [Path(self.problem.start_node())]
 self.num_expanded = 0
 while self.frontier:
 path = self.frontier.pop()
 if path.cost+self.problem.heuristic(path.end()) < self.bound:
 self.display(3,"Expanding:" ,path,"cost:" ,path.cost)
 self.num_expanded += 1
 if self.problem.is_goal(path.end()):
 self.best_path = path
 self.bound = path.cost
 self.display(2,"New best path:" ,path," cost:" ,path.cost)
 else:
 neighs = self.problem.neighbors(path.end())
 self.display(3,"Neighbors are" , neighs)
 for arc in reversed(list(neighs)):
 self.add_to_frontier(Path(path, arc))
 self.display(1,"Number of paths expanded:" ,self.num_expanded)
 self.solution = self.best_path
 return self.best_path
```

Note that this code used reversed in order to expand the neighbors of a node
in the left-to-right order one might expect. It does this because pop() removes
the rightmost element of the list. The call to list is there because reversed only
works on lists and tuples, but the neighbours can be generated.

Here is a unit test and some queries:

```python
from searchGeneric import test
if __name__ == "__main__":
 test(DF_branch_and_bound)

Example queries:
import searchProblem
searcherb1 = DF_branch_and_bound(searchProblem.acyclic_delivery_problem)
print(searcherb1.search()) # find optimal path
searcherb2 = DF_branch_and_bound(searchProblem.cyclic_delivery_problem, bound=100)
```

http://aipython.org  Version 0.7.7  August 8, 2019
Exercise 3.6 Implement a branch-and-bound search uses recursion. Hint: you don’t need an explicit frontier, but can do a recursive call for the children.

Exercise 3.7 After the branch-and-bound search found a solution, Sam ran search again, and noticed a different count. Sam hypothesized that this count was related to the number of nodes that an A∗ search would use (either expand or be added to the frontier). Or maybe, Sam thought, the count for a number of nodes when the bound is slightly above the optimal path case is related to how A∗ would work. Is there relationship between these counts? Are there different things that it could count so they are related? Try to find the most specific statement that is true, and explain why it is true.

To test the hypothesis, Sam wrote the following code, but isn’t sure it is helpful:

```python
from searchGeneric import Searcher, AStarSearcher
from searchBranchAndBound import DF_branch_and_bound
from searchMPP import SearcherMPP

DF_branch_and_bound.max_display_level = 1
Searcher.max_display_level = 1

def run(problem, name):
 print("\n\n*******", name)

 print("\nA*:")
 asearcher = AStarSearcher(problem)
 print("Path found:", asearcher.search(), " cost=", asearcher.solution.cost)
 print("there are", asearcher.frontier.count(asearcher.solution.cost),
 "elements remaining on the queue with f-value=", asearcher.solution.cost)

 print("\nA* with MPP:")
 msearcher = SearcherMPP(problem)
 print("Path found:", msearcher.search(), " cost=", msearcher.solution.cost)
 print("there are", msearcher.frontier.count(msearcher.solution.cost),
 "elements remaining on the queue with f-value=", msearcher.solution.cost)

 bound = asearcher.solution.cost + 0.01
 print("\nBranch and bound (with too-good initial bound of", bound, ")")
 tbb = DF_branch_and_bound(problem, bound) # cheating!!!!
 print("Path found:", tbb.search(), " cost=", tbb.solution.cost)
 print("Rerunning B&B")
 print("Path found:", tbb.search())

 bbound = asearcher.solution.cost * 2 + 10
 print("\nBranch and bound (with not-very-good initial bound of", bbound, ")")
 tbb2 = DF_branch_and_bound(problem, bbound) # cheating!!!!
 print("Path found:", tbb2.search(), " cost=", tbb2.solution.cost)
 print("Rerunning B&B")
```

http://aipython.org Version 0.7.7 August 8, 2019
3.3. Branch-and-bound Search

```python
print("Path found:", tbb2.search())
print("\nDepth-first search: (Use 'C if it goes on forever)")
tsearcher = Searcher(problem)
print("Path found:", tsearcher.search(), " cost=", tsearcher.solution.cost)
```

import searchProblem
from searchTest import run
if __name__ == "__main__":
    run(searchProblem.problem1, "Problem 1")
    # run(searchProblem.acyclic_delivery_problem, "Acyclic Delivery")
    # run(searchProblem.cyclic_delivery_problem, "Cyclic Delivery")
    # also test some graphs with cycles, and some with multiple least-cost paths

http://aipython.org
Chapter 4

Reasoning with Constraints

4.1 Constraint Satisfaction Problems

4.1.1 Constraints

A variable is a string or any value that is printable and can be the key of a Python dictionary.

A constraint consists of a tuple (or list) of variables and a condition.

• The tuple (or list) of variables is called the scope.

• The condition is a Boolean function that takes the same number of arguments as there are variables in the scope. The condition must have a __name__ property that gives a printable name of the function; built-in functions and functions that are defined using def have such a property; for other functions you may need to define this property.

```python
class Constraint(object):
 """A Constraint consists of
 * scope: a tuple of variables
 * condition: a function that can applied to a tuple of values
 for the variables
 """
 def __init__(self, scope, condition):
 self.scope = scope
 self.condition = condition

 def __repr__(self):
 return self.condition.__name__ + str(self.scope)
```

4. Reasoning with Constraints

An assignment is a variable:value dictionary.

If con is a constraint, con.holds(assignment) returns True or False depending on whether the condition is true or false for that assignment. The assignment assignment must assigns a value to every variable in the scope of the constraint con (and could also assign values other variables); con.holds gives an error if not all variables in the scope of con are assigned in the assignment. It ignores variables in assignment that are not in the scope of the constraint.

In Python, the * notation is used for unpacking a tuple. For example, $F(*t)$ is the same as $F(1, 2, 3)$. So if t has value $(1, 2, 3)$, then $F(*t)$ is the same as $F(1, 2, 3)$.

```python
def holds(self, assignment):
 """returns the value of Constraint con evaluated in assignment."
 ""
 precondition: all variables are assigned in assignment
 """
 return self.condition(*tuple(assignment[v] for v in self.scope))
```

4.1.2 CSPs

A constraint satisfaction problem (CSP) requires:

- **domains**: a dictionary that maps variables to the set of possible values. Thus domains[var] is the domain of variable var.

- **constraints**: a set or list of constraints.

Other properties are inferred from these:

- **variables** is the set of variables. The variables can be enumerated by using "for var in domains" because iterating over a dictionary gives the keys, which in this case are the variables.

- **var_to_const** is a mapping from variables to set of constraints, such that var_to_const[var] is the set of constraints with var in the scope.

```python
class CSP(object):
 """A CSP consists of
 * domains, a dictionary that maps each variable to its domain
 * constraints, a list of constraints
 * variables, a set of variables
 * var_to_const, a variable to set of constraints dictionary
 """
 def __init__(self, domains, constraints):
 """domains is a variable:domain dictionary
 constraints is a list of constraints"
```
4.1. Constraint Satisfaction Problems

4.1.3 Examples

In the following code \(\text{ne}\), when given a number, returns a function that is true when its argument is not that number. For example, if \(f = \text{ne}(3)\), then \(f(2)\) is True and \(f(3)\) is False. That is, \(\text{ne}(x)(y)\) is true when \(x \neq y\). Allowing a function of multiple arguments to use its arguments one at a time is called currying, after the logician Haskell Curry. Functions used as conditions in constraints require names (so they can be printed).
def nev(x):
    return val != x
nev.__name__ = str(val)+"!=" # name of the function
return nev

Similarly $is_<(x)(y)$ is true when $x = y$.

cspExamples.py — (continued)

def is_(val):
    """is a value""
    # isv = lambda x: x == val # alternative definition
    # isv = partial(eq,val) # another alternative definition
    def isv(x):
        return val == x
    isv.__name__ = str(val)+"==" 
    return isv

The CSP, $csp_0$ has variables $X$, $Y$ and $Z$, each with domain $\{1,2,3\}$. The constraints are $X < Y$ and $Y < Z$.

csp0 = CSP(['X':{1,2,3},'Y':{1,2,3}, 'Z':{1,2,3}},
            [ Constraint(('X','Y'),lt),
              Constraint(('Y','Z'),lt)])

The CSP, $csp_1$ has variables $A$, $B$ and $C$, each with domain $\{1,2,3,4\}$. The constraints are $A < B, B \neq 2$ and $B < C$. This is slightly more interesting than $csp_0$ as it has more solutions. This example is used in the unit tests, and so if it is changed, the unit tests need to be changed.

c0 = Constraint(('A','B'),lt)
c1 = Constraint(('B'),ne_(2))
c2 = Constraint(('B','C'),lt)
csp1 = CSP({'A':{1,2,3,4}, 'B':{1,2,3,4}, 'C':{1,2,3,4}},
            [c0, c1, c2])

The next CSP, $csp_2$ is Example 4.9 of the textbook; the domain consistent network (after applying the unary constriants) is shown in Figure 4.1.

csp2 = CSP({'A':{1,2,3,4}, 'B':{1,2,3,4}, 'C':{1,2,3,4},
            'D':{1,2,3,4}, 'E':{1,2,3,4}},
            [ Constraint(('B'),ne_(3)),
              Constraint(('C'),ne_(2)),
              Constraint(('A','B'),ne),
              Constraint(('B','C'),ne),
              Constraint(('C','D'),lt),
              Constraint(('A','E'),eq),
              Constraint(('A','E'),gt),
              Constraint(('B','E'),gt),
              Constraint(('C','E'),gt),
              Constraint(('C','E'),gt),
              Constraint(('C','E'),gt),

http://aipython.org
4.1. Constraint Satisfaction Problems

The following example is another scheduling problem (but with multiple answers). This is the same a scheduling 2 in the original AIspace.org consistency app.

```python
csp3 = CSP({'A':{1,2,3,4}, 'B':{1,2,3,4}, 'C':{1,2,3,4},
 'D':{1,2,3,4}, 'E':{1,2,3,4}},
 [Constraint(('A','B'), ne),
 Constraint(('A','D'), lt),
 Constraint(('A','E'), lambda a,e: (a-e)%2 == 1), # A-E is odd
 Constraint(('B','E'), lt),
 Constraint(('D','C'), lt),
 Constraint(('C','E'), ne),
 Constraint(('D','E'), ne))]
```

The following example is another abstract scheduling problem. What are the solutions?

```python
def adjacent(x,y):
 """True when x and y are adjacent numbers""
```

Figure 4.1: Domain-consistent constraint network (csp2).
The following examples represent the crossword shown in Figure 4.2.

```python
return abs(x-y) == 1

csp4 = CSP({'A':{1,2,3,4,5}, 'B':{1,2,3,4,5}, 'C':{1,2,3,4,5},
 'D':{1,2,3,4,5}, 'E':{1,2,3,4,5}},
 [Constraint(('A','B'),adjacent),
 Constraint(('B','C'),adjacent),
 Constraint(('C','D'),adjacent),
 Constraint(('D','E'),adjacent),
 Constraint(('A','C'),ne),
 Constraint(('B','D'),ne),
 Constraint(('C','E'),ne)])
```

```
def meet_at(p1,p2):
 """returns a function that is true when the words meet at the postions p1, p2"""
 def meets(w1,w2):
 return w1[p1] == w2[p2]
 meets.__name__ = "meet_at("+str(p1)+","+str(p2)+")"
 return meets

crossword1 = CSP({'one_across':{"ant", "big", "bus", "car", "has"},
 'one_down':{"book", "buys", "hold", "lane", "year"},
 'two_down':{"ginger", "search", "symbol", "syntax"},
 'three_across':{"book", "buys", "hold", "land", "year"},
 'four_across':{"ant", "big", "bus", "car", "has"}],
 [Constraint(('one_across','one_down'),meet_at(0,0)),
 Constraint(('one_across','two_down'),meet_at(2,0)),
 Constraint(('three_across','two_down'),meet_at(2,2)),
 Constraint(('three_across','one_down'),meet_at(0,2)),
 Constraint(('four_across','two_down'),meet_at(0,4))])
```

Figure 4.2: A crossword puzzle to be solved
4.1. Constraint Satisfaction Problems

In an alternative representation of a crossword (the “dual” representation), the variables represent letters, and the constraints are that adjacent sequences of letters form words.

```python
crossword1d = CSP({'p00':letters, 'p10':letters, 'p20':letters, # first row
 'p01':letters, 'p21':letters, # second row
 'p02':letters, 'p12':letters, 'p22':letters, # third row
 'p03':letters, 'p23':letters, # fourth row
 'p24':letters, 'p34':letters, 'p44':letters, # fifth row
 'p25':letters # sixth row
 },
 [Constraint(('p00', 'p10', 'p20'), is_word), # 1-across
 Constraint(('p00', 'p01', 'p02'), is_word), # 1-down
 Constraint(('p02', 'p12', 'p22'), is_word), # 3-across
 Constraint(('p20', 'p21', 'p23', 'p24', 'p25'), is_word), # 2-down
 Constraint(('p24', 'p34', 'p44'), is_word) # 4-across
])
```

Unit tests

The following defines a unit test for solvers, by default using example csp1.

```python
def test(CSP_solver, csp=csp1,
 solutions=[{'A': 1, 'B': 3, 'C': 4}, {'A': 2, 'B': 3, 'C': 4}]):
 """CSP_solver is a solver that takes a csp and returns a solution
 constraint satisfaction problem
 solutions is the list of all solutions to csp
 This tests whether the solution returned by CSP_solver is a solution.
 """
 print("Testing csp with",CSP_solver.__doc__)
 sol0 = CSP_solver(csp)
 print("Solution found:",sol0)
 assert sol0 in solutions, "Solution not correct for "+str(csp)
 print("Passed unit test")
```

**Exercise 4.1** Modify `test` so that instead of taking in a list of solutions, it checks whether the returned solution actually is a solution.
**Exercise 4.2** Propose a test that is appropriate for CSPs with no solutions. Assume that the test designer knows there are no solutions. Consider what a CSP solver should return if there are no solutions to the CSP.

**Exercise 4.3** Write a unit test that checks whether all solutions (e.g., for the search algorithms that can return multiple solutions) are correct, and whether all solutions can be found.

### 4.2 Solving a CSP using Search

To run the demo, in folder "aipython", load "cspSearch.py", and copy and paste the example queries at the bottom of that file.

The first solver searches through the space of partial assignments. This takes in a CSP problem and an optional variable ordering, which is a list of the variables in the CSP. It then constructs a search space that can be solved using the search methods of the previous chapter. In this search space:

- A node is a `variable : value` dictionary which does not violate any constraints (so that dictionaries that violate any constraints are not added).
- An arc corresponds to an assignment of a value to the next variable. This assumes a static ordering; the next variable chosen to split does not depend on the context. If no variable ordering is given, this makes no attempt to choose a good ordering.

```python
from cspProblem import CSP, Constraint
from searchProblem import Arc, Search_problem
from utilities import dict_union

class Search_from_CSP(Search_problem):
 """A search problem directly from the CSP."

 A node is a variable:value dictionary"

 def __init__(self, csp, variable_order=None):
 self.csp=csp
 if variable_order:
 assert set(variable_order) == set(csp.variables)
 assert len(variable_order) == len(csp.variables)
 self.variables = variable_order
 else:
 self.variables = list(csp.variables)

 def is_goal(self, node):
 """returns whether the current node is a goal for the search"
 return len(node)==len(self.csp.variables)
```

The `cspSearch.py` file contains representations of a search problem from a CSP.
4.2. Solving a CSP using Search

```python
def start_node(self):
 """returns the start node for the search
 """
 return {}
```

The `neighbors(node)` method uses the fact that the length of the node, which is the number of variables already assigned, is the index of the next variable to split on. Note that we do no need to check whether there are no more variables to split on, as the nodes are all consistent, by construction, and so when there are no more variables we have a solution, and so don’t need the neighbours.

```python
def neighbors(self, node):
 """returns a list of the neighboring nodes of node.
 """
 var = self.variables[len(node)] # the next variable
 res = []
 for val in self.csp.domains[var]:
 new_env = dict_union(node,{var:val}) #dictionary union
 if self.csp.consistent(new_env):
 res.append(Arc(node,new_env))
 return res
```

The unit tests relies on a solver. The following procedure creates a solver using search that can be tested.

```python
from cspExamples import csp1,csp2,test, crossword1, crossword1d
from searchGeneric import Searcher

def dfs_solver(csp):
 """depth-first search solver"
 path = Searcher(Search_from_CSP(csp)).search()
 if path is not None:
 return path.end()
 else:
 return None
```

```python
if __name__ == "__main__":
 test(dfs_solver)
```

## Test Solving CSPs with Search:
searcher1 = Searcher(Search_from_CSP(csp1))
# print(searcher1.search()) # get next solution
searcher2 = Searcher(Search_from_CSP(csp2))
# print(searcher2.search()) # get next solution
searcher3 = Searcher(Search_from_CSP(crossword1))
# print(searcher3.search()) # get next solution
searcher4 = Searcher(Search_from_CSP(crossword1d))
# print(searcher4.search()) # get next solution (warning: slow)
```
4. Reasoning with Constraints

Exercise 4.4 What would happen if we constructed the new assignment by assigning node[\text{var}] = \text{val} (with side effects) instead of using dictionary union? Give an example of where this could give a wrong answer. How could the algorithm be changed to work with side effects? (Hint: think about what information needs to be in a node).

Exercise 4.5 Change neighbors so that it returns an iterator of values rather than a list. (Hint: use \text{yield}.)

4.3 Consistency Algorithms

To run the demo, in folder "aipython", load "cspConsistency.py", and copy and paste the commented-out example queries at the bottom of that file.

A \text{Con solver} is used to simplify a CSP using arc consistency.

```python
from display import Displayable
class Con_solver(Displayable):
    """Solves a CSP with arc consistency and domain splitting""
    def __init__(self, csp, **kwargs):
        """a CSP solver that uses arc consistency
        * csp is the CSP to be solved
        * kwargs is the keyword arguments for Displayable superclass
        ""
        self.csp = csp
        super().__init__(**kwargs) # Or Displayable.__init__(self,**kwargs)

    def make_arc_consistent(self, orig_domains=None, to_do=None):
        """Makes this CSP arc-consistent using generalized arc consistency
        orig_domains is the original domains
        to_do is a set of (variable,constraint) pairs
        returns the reduced domains (an arc-consistent variable:domain dictionary)
        ""
        if orig_domains is None:
            orig_domains = self.csp.domains
        if to_do is None:
            to_do = {(var, const) for const in self.csp.constraints
                      for var in const.scope}
        else:
```

http://aipython.org Version 0.7.7 August 8, 2019
4.3. Consistency Algorithms

```python
4.3. Consistency Algorithms

4.3. Consistency Algorithms

36 to_do = to_do.copy() # use a copy of to_do
37 domains = orig_domains.copy()
38 self.display(2, "Performing AC with domains", domains)
39 while to_do:
40 var, const = self.select_arc(to_do)
41 self.display(3, "Processing arc (", var, ",", const, ")")
42 other_vars = [ov for ov in const.scope if ov != var]
43 new_domain = {val for val in domains[var]
44 if self.any_holds(domains, const, {var: val}, other_vars)
45 if new_domain != domains[var]:
46 self.display(4, "Arc: (", var, ",", const, ") is inconsistent")
47 self.display(3, "Domain pruned", "dom(", var, ") =", new_domain,
48 " due to ", const)
49 domains[var] = new_domain
50 add_to_do = self.new_to_do(var, const) - to_do
51 to_do |= add_to_do   # set union
52 self.display(3, " adding", add_to_do if add_to_do else "nothing", "to to_do.")
53 self.display(4, "Arc: (", var, ",", const, ") now consistent")
54 self.display(2, "AC done. Reduced domains", domains)
55 return domains

56 def new_to_do(self, var, const):
57 """returns new elements to be added to to_do after assigning
58 variable var in constraint const.
59 """
60 return [(nvar, nconst) for nconst in self.csp.var_to_const[var]
61 if nconst != const
62 for nvar in nconst.scope
63 if nvar != var]

The following selects an arc. Any element of to_do can be selected. The selected
element needs to be removed from to_do. The default implementation just se-
lects which ever element pop method for sets returns. A user interface could
allow the user to select an arc. Alternatively a more sophisticated selection
could be employed (or just a stack or a queue).

cspConsistency.py — (continued)"
66 def select_arc(self, to_do):
67 """Selects the arc to be taken from to_do .
68 * to_do is a set of arcs, where an arc is a (variable,constraint) pair
69 the element selected must be removed from to_do.
70 """
71 return to_do.pop()

The function any_holds is useful to go beyond unary and binary constraints. It
allows us to use constraints involving an arbitrary number of variables. (Note
that it also works for unary and binary constraints; the cases where len(other_vars)
is 0 or 1 are not actually required, but are there for efficiency and because they
are easier to understand.) any_holds is a recursive function that tries to finds an
assignment of values to the other variables (other_vars) that satisfies constraint

http://aipython.org  Version 0.7.7  August 8, 2019
const given the assignment in env. The integer variable ind specifies which index to other_vars needs to be checked next. As soon as one assignment returns True, the algorithm returns True. Note that it has side effects with respect to env; it changes the values of the variables in other_vars. It should only be called when the side effects have no ill effects.

def any_holds(self, domains, const, env, other_vars, ind=0):
    """returns True if Constraint const holds for an assignment
    that extends env with the variables in other_vars[ind:]
    env is a dictionary
    Warning: this has side effects and changes the elements of env
    """
    if ind == len(other_vars):
        return const.holds(env)
    else:
        var = other_vars[ind]
        for val in domains[var]:
            # env = dict_union(env,{var:val}) # no side effects!
            env[var] = val
            if self.any_holds(domains, const, env, other_vars, ind + 1):
                return True
    return False

4.3.1 Direct Implementation of Domain Splitting

The following is a direct implementation of domain splitting with arc consistency that uses recursion. It finds one solution if one exists or returns False if there are no solutions.

def solve_one(self, domains=None, to_do=None):
    """return a solution to the current CSP or False if there are no solutions
to_do is the list of arcs to check
    """
    if domains is None:
        domains = self.csp.domains
        new_domains = self.make_arc_consistent(domains, to_do)
    if any(len(new_domains[var]) == 0 for var in domains):
        return False
    elif all(len(new_domains[var]) == 1 for var in domains):
        self.display(2, "solution:", {var: select(new_domains[var]) for var in new_domains})
        return {var: select(new_domains[var]) for var in domains}
    else:
        var = self.select_var(x for x in self.csp.variables if len(new_domains[x]) > 1)
        if var:
            dom1, dom2 = partition_domain(new_domains[var])
            self.display(3, "...splitting", var, "into", dom1, "and", dom2)
4.3. Consistency Algorithms

```python
new_doms1 = copy_with_assign(new_domains, var, dom1)
new_doms2 = copy_with_assign(new_domains, var, dom2)
to_do = self.new_to_do(var, None)
self.display(3, " adding", to_do if to_do else "nothing", "to to_do.")
return self.solve_one(new_doms1, to_do) or self.solve_one(new_doms2, to_do)
```

```python
def select_var(self, iter_vars):
 """return the next variable to split""
 return select(iter_vars)
```

```python
def partition_domain(dom):
 """partitions domain dom into two.
 ""
 split = len(dom) // 2
 dom1 = set(list(dom)[:-split])
 dom2 = dom - dom1
 return dom1, dom2
```

The domains are implemented as a dictionary that maps each variables to its domain. Assigning a value in Python has side effects which we want to avoid. `copy_with_assign` takes a copy of the domains dictionary, perhaps allowing for a new domain for a variable. It creates a copy of the CSP with an (optional) assignment of a new domain to a variable. Only the domains are copied.

```python
def copy_with_assign(domains, var=None, new_domain={True, False}):
 """create a copy of the domains with an assignment var=new_domain
 if var==None then it is just a copy.
 ""
 newdoms = domains.copy()
 if var is not None:
 newdoms[var] = new_domain
 return newdoms
```

```python
def select(iterable):
 """select an element of iterable. Returns None if there is no such element.
 ""
 This implementation just picks the first element.
 For many of the uses, which element is selected does not affect correctness, but may affect efficiency.
 ""
 for e in iterable:
 return e # returns first element found
```

**Exercise 4.6** Implement of `solve_all` that is like `solve_one` but returns the set of all solutions.

**Exercise 4.7** Implement `solve_enum` that enumerates the solutions. It should use Python’s `yield` (and perhaps `yield from`).
4. Reasoning with Constraints

Unit test:

```python
from cspExamples import test
def ac_solver(csp):
 """arc consistency (solve_one)"
 return Con_solver(csp).solve_one()
if __name__ == "__main__":
test(ac_solver)
```

4.3.2 Domain Splitting as an interface to graph searching

An alternative implementation is to implement domain splitting in terms of
the search abstraction of Chapter 3.

A node is a CSP dictionary.

```python
from searchProblem import Arc, Search_problem
class Search_with_AC_from_CSP(Search_problem, Displayable):
 """A search problem with arc consistency and domain splitting
 A node is a CSP ""
 def __init__(self, csp):
 self.cons = Con_solver(csp) #copy of the CSP
 self.domains = self.cons.make_arc_consistent()

 def is_goal(self, node):
 """node is a goal if all domains have 1 element""
 return all(len(node[var])==1 for var in node)

 def start_node(self):
 return self.domains

 def neighbors(self,node):
 """returns the neighboring nodes of node."
 neighs = []
 var = select(x for x in node if len(node[x])>1)
 if var:
 dom1, dom2 = partition_domain(node[var])
 self.display(2,"Splitting", var, "into", dom1, "and", dom2)
 to_do = self.cons.new_to_do(var,None)
 for dom in [dom1,dom2]:
 newdoms = copy_with_assign(node,var,dom)
 cons_doms = self.cons.make_arc_consistent(newdoms,to_do)
 if all(len(cons_doms[v])>0 for v in cons_doms):
 # all domains are non-empty
 neighs.append(Arc(node,cons_doms))
 else:
```

http://aipython.org  Version 0.7.7  August 8, 2019
4.4. Solving CSPs using Stochastic Local Search

Exercise 4.8  When splitting a domain, this code splits the domain into half, approximately in half (without any effort to make a sensible choice). Does it work better to split one element from a domain?

Unit test:

```python
from cspExamples import test
from searchGeneric import Searcher

def ac_search_solver(csp):
 """arc consistency (search interface)""
 sol = Searcher(Search_with_AC_from_CSP(csp)).search()
 if sol:
 return {v: select(d) for (v, d) in sol.end().items()}
 if __name__ == "__main__":
 test(ac_search_solver)
```

Testing:

```python
from cspExamples import csp1, csp2, crossword1, crossword1d

Test Solving CSPs with Arc consistency and domain splitting:
#Con_solver.max_display_level = 4 # display details of AC (0 turns off)
#Con_solver(csp1).solve_one()
#print(Con_solver1d.search())
#searcher1d = Searcher(Search_with_AC_from_CSP(csp1))
#searcher2c = Searcher(Search_with_AC_from_CSP(csp2))
#searcher3c = Searcher(Search_with_AC_from_CSP(crossword1))
#searcher5c = Searcher(Search_with_AC_from_CSP(crossword1d))
```

4.4  Solving CSPs using Stochastic Local Search

To run the demo, in folder "aipython", load "cspSLS.py", and copy and paste the commented-out example queries at the bottom of that file. This assumes Python 3. Some of the queries require matplotlib.

This implements both the two-stage choice, the any-conflict algorithm and a random choice of variable (and a probabilistic mix of the three).

http://aipython.org  Version 0.7.7  August 8, 2019
Given a CSP, the stochastic local searcher (SLSearcher) creates the data structures:

- `variables_to_select` is the set of all of the variables with domain-size greater than one. For a variable not in this set, we cannot pick another value from that variable.

- `var_to_constraints` maps from a variable into the set of constraints it is involved in. Note that the inverse mapping from constraints into variables is part of the definition of a constraint.

```python
cspSLS.py — Stochastic Local Search for Solving CSPs

from cspProblem import CSP, Constraint
from searchProblem import Arc, Search_problem
from display import Displayable
import random
import heapq

class SLSearcher(Displayable):
 """A search problem directly from the CSP.""
 def __init__(self, csp):
 self.csp = csp
 self.variables_to_select = {var for var in self.csp.variables if len(self.csp.domains[var]) > 1}
 # Create assignment and conflicts set
 self.current_assignment = None # this will trigger a random restart
 self.number_of_steps = 1 #number of steps after the initialization

 def restart(self):
 """creates a new total assignment and the conflict set ""
 self.current_assignment = {var:random.sample(dom) for (var,dom) in self.csp.domains.items()}
 self.display(2,"Initial assignment",self.current_assignment)
 self.conflicts = set()
 for con in self.csp.constraints:
 if not con.holds(self.current_assignment):
 self.conflicts.add(con)
 self.display(2,"Number of conflicts",len(self.conflicts))
 self.variable_pq = None

The `search` method is the top-level searching algorithm. It can either be used to start the search or to continue searching. If there is no current assignment,
4.4. Solving CSPs using Stochastic Local Search

it must create one. Note that, when counting steps, a restart is counted as one step.

This method selects one of two implementations. The argument prob_best is the probability of selecting a best variable (one involving the most conflicts). When the value of prob_best is positive, the algorithm needs to maintain a priority queue of variables and the number of conflicts (using search_with_var_pq). If the probability of selecting a best variable is zero, it does not need to maintain this priority queue (as implemented in search_with_any_conflict).

The argument prob_anycon is the probability that the any-conflict strategy is used (which selects a variable at random that is in a conflict), assuming that it is not picking a best variable. Note that for the probability parameters, any value less that zero acts like probability zero and any value greater than 1 acts like probability 1. This means that when prob_anycon = 1.0, a best variable is chosen with probability prob_best, otherwise a variable in any conflict is chosen. A variable is chosen at random with probability 1 − prob_anycon − prob_best as long as that is positive.

This returns the number of steps needed to find a solution, or None if no solution is found. If there is a solution, it is in self.current_assignment.

```python
def search(self, max_steps, prob_best=0, prob_anycon=1.0):
    """
    returns the number of steps or None if these is no solution.
    If there is a solution, it can be found in self.current_assignment
    max_steps is the maximum number of steps it will try before giving up
    prob_best is the probability that a best varaible (one in most conflict) is selected
    prob_anycon is the probability that a variabe in any conflict is selected
    (otherwise a variable is chosen at random)
    """
    if self.current_assignment is None:
        self.restart()
        self.number_of_steps += 1
        if not self.conflicts:
            return self.number_of_steps
        if prob_best > 0: # we need to maintain a variable priority queue
            return self.search_with_var_pq(max_steps, prob_best, prob_anycon)
        else:
            return self.search_with_any_conflict(max_steps, prob_anycon)
```

Exercise 4.9 This does an initial random assignment but does not do any random restarts. Implement a searcher that takes in the maximum number of walk steps (corresponding to existing max_steps) and the maximum number of restarts, and returns the total number of steps for the first solution found. (As in search, the solution found can be extracted from the variable self.current_assignment).
4.4.1 Any-conflict

If the probability of picking a best variable is zero, the implementation need to keeps track of which variables are in conflicts.

```python
def search_with_any_conflict(self, max_steps, prob_anycon=1.0):
    """Searches with the any_conflict heuristic.
    This relies on just maintaining the set of conflicts;
    it does not maintain a priority queue
    """
    self.variable_pq = None # we are not maintaining the priority queue.
    # This ensures it is regenerated if needed.
    for i in range(max_steps):
        self.number_of_steps += 1
        if random.random() < prob_anycon:
            con = random_sample(self.conflicts) # pick random conflict
            var = random_sample(con.scope) # pick variable in conflict
        else:
            var = random_sample(self.variables_to_select)
        if len(self.csp.domains[var]) > 1:
            val = random_sample(self.csp.domains[var] -
                {self.current_assignment[var]})
            self.display(2,self.number_of_steps,": Assigning",var,"=",val)
            self.current_assignment[var]=val
            for varcon in self.csp.var_to_const[var]:
                if varcon.holds(self.current_assignment):
                    if varcon in self.conflicts:
                        self.conflicts.remove(varcon)
                    else:
                        if varcon not in self.conflicts:
                            self.conflicts.add(varcon)
                        self.display(2," Number of conflicts",len(self.conflicts))
            if not self.conflicts:
                self.display(1,"Solution found:",self.current_assignment,
                    "in",self.number_of_steps,"steps")
                return self.number_of_steps
        self.display(1,"No solution in",self.number_of_steps,"steps",
            len(self.conflicts),"conflicts remain")
    return None
```

Exercise 4.10 This makes no attempt to find the best alternative value for a variable. Modify the code so that after selecting a variable it selects a value the reduces the number of conflicts by the most. Have a parameter that specifies the probability that the best value is chosen.

4.4.2 Two-Stage Choice

This is the top-level searching algorithm that maintains a priority queue of variables ordered by (the negative of) the number of conflicts, so that the variable
4.4. Solving CSPs using Stochastic Local Search

with the most conflicts is selected first. If there is no current priority queue of variables, one is created.

The main complexity here is to maintain the priority queue. This uses the dictionary \textit{var differential} which specifies how much the values of variables should change. This is used with the updatable queue (page 68) to find a variable with the most conflicts.

def search_with_var_pq(self, max_steps, prob_best=1.0, prob_anycon=1.0):
 """search with a priority queue of variables.
 This is used to select a variable with the most conflicts.
 """
 if not self.variable_pq:
 self.create_pq()
 pick_best_or_con = prob_best + prob_anycon
 for i in range(max_steps):
 self.number_of_steps += 1
 randnum = random.random()
 ## Pick a variable
 if randnum < prob_best: # pick best variable
 var, oldval = self.variable_pq.top()
 elif randnum < pick_best_or_con: # pick a variable in a conflict
 con = random_sample(self.conflicts)
 var = random_sample(con.scope)
 else: #pick any variable that can be selected
 var = random_sample(self.variables_to_select)
 if len(self.csp.domains[var]) > 1: # var has other values
 ## Pick a value
 val = random_sample(self.csp.domains[var] -
 {self.current_assignment[var]})
 self.display(2, "Assigning", var, val)
 ## Update the priority queue
 var_differential = {}
 self.current_assignment[var] = val
 for varcon in self.csp.var_to_const[var]:
 self.display(3, "Checking", varcon)
 if varcon.holds(self.current_assignment):
 if varcon in self.conflicts: # was incons, now consis
 self.display(3, "Became consistent", varcon)
 self.conflicts.remove(varcon)
 for v in varcon.scope: # v is in one fewer conflicts
 var_differential[v] = var_differential.get(v, 0) - 1
 else:
 if varcon not in self.conflicts: # was consis, not now
 self.display(3, "Became inconsistent", varcon)
 self.conflicts.add(varcon)
 for v in varcon.scope: # v is in one more conflicts
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
 else:
 self.display(3, "Not consistent", varcon)
 self.conflicts.add(varcon)
 for v in varcon.scope:
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
 self.display(3, "Checking", varcon)
 if varcon.holds(self.current_assignment):
 if varcon in self.conflicts: # was incons, now consis
 self.display(3, "Became consistent", varcon)
 self.conflicts.remove(varcon)
 for v in varcon.scope: # v is in one fewer conflicts
 var_differential[v] = var_differential.get(v, 0) - 1
 else:
 if varcon not in self.conflicts: # was consis, not now
 self.display(3, "Became inconsistent", varcon)
 self.conflicts.add(varcon)
 for v in varcon.scope: # v is in one more conflicts
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
 else:
 self.display(3, "Not consistent", varcon)
 self.conflicts.add(varcon)
 for v in varcon.scope:
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
 self.display(3, "Checking", varcon)
 if varcon.holds(self.current_assignment):
 if varcon in self.conflicts: # was incons, now consis
 self.display(3, "Became consistent", varcon)
 self.conflicts.remove(varcon)
 for v in varconscope: # v is in one fewer conflicts
 var_differential[v] = var_differential.get(v, 0) - 1
 else:
 if varcon not in self.conflicts: # was consis, not now
 self.display(3, "Became inconsistent", varcon)
 self.conflicts.add(varcon)
 for v in varconscope: # v is in one more conflicts
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
 else:
 self.display(3, "Not consistent", varcon)
 self.conflicts.add(varcon)
 for v in varconscope:
 var_differential[v] = var_differential.get(v, 0) + 1
 self.variable_pq.update_each_priority(var_differential)
 self.display(2, "Number of conflicts", len(self.conflicts))
if not self.conflicts: # no conflicts, so solution found
 self.display(1,"Solution found:", self.current_assignment,"in",
 self.number_of_steps,"steps")
 return self.number_of_steps
self.display(1,"No solution in",self.number_of_steps,"steps",
len(self.conflicts),"conflicts remain")
return None

create pq creates an updatable priority queue of the variables, ordered by the number of conflicts they participate in. The priority queue only includes variables in conflicts and the value of a variable is the negative of the number of conflicts the variable is in. This ensures that the priority queue, which picks the minimum value, picks a variable with the most conflicts.

def create_pq(self):
 """Create the variable to number-of-conflicts priority queue.
 This is needed to select the variable in the most conflicts.
 """
 self.variable_pq = Updatable_priority_queue()
 var_to_number_conflicts = {}
 for con in self.conflicts:
 for var in con.scope:
 var_to_number_conflicts[var] = var_to_number_conflicts.get(var,0)+1
 for var,num in var_to_number_conflicts.items():
 if num>0:
 self.variable_pq.add(var,-num)

Exercise 4.11 This makes no attempt to find the best alternative value for a variable. Modify the code so that after selecting a variable it selects a value the reduces the number of conflicts by the most. Have a parameter that specifies the probability that the best value is chosen.

Exercise 4.12 These implementations always select a value for the variable selected that is different from its current value (if that is possible). Change the code so that it does not have this restriction (so it can leave the value the same). Would you expect this code to be faster? Does it work worse (or better)?

4.4.3 Updatable Priority Queues

An updatable priority queue is a priority queue, where key-value pairs can be stored, and the pair with the smallest key can be found and removed quickly,
and where the values can be updated. This implementation follows the idea of http://docs.python.org/3.5/library/heapq.html, where the updated elements are marked as removed. This means that the priority queue can be used unmodified. However, this might be expensive if changes are more common than popping (as might happen if the probability of choosing the best is close to zero).

In this implementation, the equal values are sorted randomly. This is achieved by having the elements of the heap being \([\text{val}, \text{rand}, \text{elt}]\) triples, where the second element is a random number. Note that Python requires this to be a list, not a tuple, as the tuple cannot be modified.

```python
class Updatable_priority_queue(object):
    """A priority queue where the values can be updated. Elements with the same value are ordered randomly."
    # priority queue of [val,rand,elt] triples
    # map from elt to [val,rand,elt] triple in pq
    self.REMOVED = "*removed*" # a string that won't be a legal element
    self.max_size=0

    def __init__(self):
        self.pq = [] # priority queue of [val,rand,elt] triples
        self.elt_map = {} # map from elt to [val,rand,elt] triple in pq
        self.REMOVED = "*removed*" # a string that won't be a legal element
        self.max_size=0

    def add(self,elt,val):
        """adds elt to the priority queue with priority=val."""
        assert val <= 0, val
        assert elt not in self.elt_map, elt
        new_triple = [val, random.random(),elt]
        heapq.heappush(self.pq, new_triple)
        self.elt_map[elt] = new_triple

    def remove(self,elt):
        """remove the element from the priority queue""
        if elt in self.elt_map:
            self.elt_map[elt][2] = self.REMOVED
            del self.elt_map[elt]

    def update_each_priority(self,update_dict):
        """update values in the priority queue by subtracting the values in update_dict from the priority of those elements in priority queue.""
        for elt,incr in update_dict.items():
            if incr != 0:
                newval = self.elt_map.get(elt,[0])[0] - incr
```

http://aipython.org
Version 0.7.7
August 8, 2019
assert newval <= 0, str(elt)+"+str(newval+incr)+"+str(increment)
self.remove(elt)
if newval != 0:
 self.add(elt,newval)

def pop(self):
 """Removes and returns the (elt,value) pair with minimal value.
 If the priority queue is empty, IndexError is raised.
 """
 self.max_size = max(self.max_size, len(self.pq)) # keep statistics
 triple = heappq.heappop(self.pq)
 while triple[2] == self.REMOVED:
 triple = heappq.heappop(self.pq)
 del self.elt_map[triple[2]]
 return triple[2], triple[0] # elt, value

def top(self):
 """Returns the (elt,value) pair with minimal value, without removing it.
 If the priority queue is empty, IndexError is raised.
 """
 self.max_size = max(self.max_size, len(self.pq)) # keep statistics
 triple = self.pq[0]
 while triple[2] == self.REMOVED:
 heappq.heappop(self.pq)
 triple = self.pq[0]
 return triple[2], triple[0] # elt, value

def empty(self):
 """returns True iff the priority queue is empty""
 return all(triple[2] == self.REMOVED for triple in self.pq)

4.4.4 Plotting Runtime Distributions

.Runtime_distribution_ uses matplotlib to plot runtime distributions. Here the runtime is a misnomer as we are only plotting the number of steps, not the time. Computing the runtime is non-trivial as many of the runs have a very short runtime. To compute the time accurately would require running the same code, with the same random seed, multiple times to get a good estimate of the runtime. This is left as an exercise.

```python
import matplotlib.pyplot as plt
class Runtime_distribution(object):
    def __init__(self, csp, xscale='log'):
        """Sets up plotting for csp
        xscale is either 'linear' or 'log'
        """
        self.csp = csp

http://aipython.org
```
4.4. Solving CSPs using Stochastic Local Search

```python
plt.ion()
plt.xlabel("Number of Steps")
plt.ylabel("Cumulative Number of Runs")
plt.xscale(xscale) # Makes a 'log' or 'linear' scale

def plot_runs(self,num_runs=100,max_steps=1000, prob_best=1.0, prob_anycon=1.0):
    """Plots num_runs of SLS for the given settings."
    stats = []
    SLSearcher.max_display_level, temp_mdl = 0, SLSearcher.max_display_level # no display
    for i in range(num_runs):
        searcher = SLSearcher(self.csp)
        num_steps = searcher.search(max_steps, prob_best, prob_anycon)
        if num_steps:
            stats.append(num_steps)
    stats.sort()
    if prob_best >= 1.0:
        label = "P(best)=1.0"
    else:
        p_ac = min(prob_anycon, 1-prob_best)
        label = "P(best)=%.2f, P(ac)=%.2f" % (prob_best, p_ac)
    plt.plot(stats,range(len(stats)),label=label)
    plt.legend(loc="upper left")
    plt.draw()
    SLSearcher.max_display_level= temp_mdl #restore display
```

4.4.5 Testing

```python
from cspExamples import test
def sls_solver(csp,prob_best=0.7):
    """stochastic local searcher (prob_best=0.7)""
    se0 = SLSearcher(csp)
    se0.search(1000,prob_best)
    return se0.current_assignment

def any_conflict_solver(csp):
    """stochastic local searcher (any-conflict)""
    return sls_solver(csp,0)

if __name__ == "__main__":
    test(sls_solver)
    test(any_conflict_solver)
```

```python
from cspExamples import csp1, csp2, crossword1
## Test Solving CSPs with Search:
#se1 = SLSearcher(csp1); print(se1.search(100))
#se2 = SLSearcher(csp2); print(se2.search(1000,1.0)) # greedy
#se2 = SLSearcher(csp2); print(se2.search(1000,0)) # any_conflict
```

http://aipython.org Version 0.7.7 August 8, 2019
Exercise 4.13 Modify this to plot the runtime, instead of the number of steps. To measure runtime use `timeit` (https://docs.python.org/3.5/library/timeit.html). Small runtimes are inaccurate, so `timeit` can run the same code multiple times. Stochastic local algorithms give different runtimes each time called. To make the timing meaningful, you need to make sure the random seed is the same for each repeated call (see `random.getstate` and `random.setstate` in https://docs.python.org/3.5/library/random.html). Because the runtime for different seeds can vary a great deal, for each seed, you should start with 1 iteration and multiplying it by, say 10, until the time is greater than 0.2 seconds. Make sure you plot the average time for each run. Before you start, try to estimate the total runtime, so you will be able to tell if there is a problem with the algorithm stopping.
5.1 Representing Knowledge Bases

A clause consists of a head (an atom) and a body. A body is represented as a list of atoms. Atoms are represented as strings.

```python
class Clause(object):
    '''A definite clause'''
    def __init__(self, head, body=[]):
        '''clause with atom head and lost of atoms body'''
        self.head = head
        self.body = body
    def __str__(self):
        '''returns the string representation of a clause.
        '''
        if self.body:
            return self.head + ' <- ' + ' & '.join(self.body) + ' .'
        else:
            return self.head + ' .'
```

An askable atom can be asked of the user. The user can respond in English or French or just with a “y”.

```python
class Askable(object):
    '''An askable atom'''
    def __init__(self, atom):
        '''clause with atom head and lost of atoms body'''
```
A knowledge base is a list of clauses and askables. In order to make top-down inference faster, this creates a dictionary that maps each atoms into the set of clauses with that atom in the head.

Here is a trivial example (I think therefore I am) using in the unit tests:

```python
def __str__(self):
    """returns a string representation of this knowledge base."
    """
    return '\n'.join([str(c) for c in self.statements])
```

```python
triv_KB = KB([  
    Clause('i_am', ['i_think']),  
    Clause('i_think'),  
    Clause('i_smell', ['i_exist'])  
])
```
5.2. Bottom-up Proofs

Here is a representation of the electrical domain of the textbook:

```
 elect = KB([  
  Clause('light_l1'),  
  Clause('light_l2'),  
  Clause('ok_l1'),  
  Clause('ok_l2'),  
  Clause('ok_cb1'),  
  Clause('ok_cb2'),  
  Clause('live_outside'),  
  Clause('live_l1', ['live_w0']),  
  Clause('live_w0', ['up_s2','live_w1']),  
  Clause('live_w0', ['down_s2','live_w2']),  
  Clause('live_w1', ['up_s1', 'live_w3']),  
  Clause('live_w2', ['down_s1', 'live_w3'] ),  
  Clause('live_l2', ['live_w4']),  
  Clause('live_w4', ['up_s3', 'live_w3']),  
  Clause('live_p_1', ['live_w3']),  
  Clause('live_w3', ['live_w5', 'ok_cb1']),  
  Clause('live_p_2', ['live_w6']),  
  Clause('live_w6', ['live_w5', 'ok_cb2']),  
  Clause('live_w5', ['live_outside']),  
  Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),  
  Clause('lit_l2', ['light_l2', 'live_l2', 'ok_l2']),  
  Askable('up_s1'),  
  Askable('down_s1'),  
  Askable('up_s2'),  
  Askable('down_s2'),  
  Askable('up_s3'),  
  Askable('down_s2')  
])
```

5.2 Bottom-up Proofs

`fixed_point` computes the fixed point of the knowledge base `kb`.

```
 from logicProblem import yes

def fixed_point(kb):
    """Returns the fixed point of knowledge base kb. """
    fp = ask_askables(kb)
    added = True
    while added:
        added = False  # added is true when an atom was added to fp this iteration
```

http://aipython.org
for c in kb.clauses:
 if c.head not in fp and all(b in fp for b in c.body):
 fp.add(c.head)
 added = True
 kb.display(2, c.head, "added to fp due to clause", c)
return fp

def ask_askables(kb):
 return {at for at in kb.askables if yes(input("Is " + at + " true? "))}

The following provides a trivial unit test, by default using the knowledge base triv_KB:

Exercise 5.1 It is not very user-friendly to ask all of the askables up-front. Implement ask-the-user so that questions are only asked if useful, and are not re-asked. For example, if there is a clause \(h \leftarrow a \land b \land c \land d \land e \), where \(c \) and \(e \) are askable, \(c \) and \(e \) only need to be asked if \(a, b, d \) are all in \(fp \) and have not been asked before. Askable \(e \) only needs to be asked if the user says "yes" to \(c \). Askable \(c \) doesn’t need to be asked if the user previously replied "no" to \(e \).

This form of ask-the-user can ask a different set of questions than the top-down interpreter that asks questions when encountered. Give an example where they ask different questions (neither set of questions asked is a subset of the other).

Exercise 5.2 This algorithm runs in time \(O(n^2) \), where \(n \) is the number of clauses, for a bounded number of elements in the body; each iteration goes through each of the clauses, and in the worst case, it will do an iteration for each clause. It is possible to implement this in time \(O(n) \) time by creating an index that maps an atom to the set of clauses with that atom in the body. Implement this. What is its complexity as a function of \(n \) and \(b \), the maximum number of atoms in the body of a clause?

Exercise 5.3 It is possible to be asymptotically more efficient (in terms of the number of elements in a body) than the method in the previous question by noticing that each element of the body of clause only needs to be checked once. For example, the clause \(a \leftarrow b \land c \land d \), needs only be considered when \(b \) is added to \(fp \). Once \(b \) is added to \(fp \), if \(c \) is already in \(fp \), we know that \(a \) can be added as soon as \(d \) is added. Implement this. What is its complexity as a function of \(n \) and \(b \), the maximum number of atoms in the body of a clause?
5.3 Top-down Proofs

prove\((kb, goal)\) is used to prove goal from a knowledge base, \(kb\), where a goal is a list of atoms. It returns True if \(kb \vdash goal\). The indent is used when displaying the code (and doesn’t need to have a non-default value).

```
from logicProblem import yes

def prove(kb, ans_body, indent=""):  
  
  kb.display(2,indent,'yes <-', ' & '.join(ans_body))
  if ans_body:
    selected = ans_body[0] # select first atom from ans_body
    if selected in kb.askables:
      return (yes(input("Is " +selected+" true? "))
      and prove(kb,ans_body[1:],indent+" "))
    else:
      return any(prove(kb,cl.body+ans_body[1:],indent+" ")
      for cl in kb.clauses_for_atom(selected))
  else:
    return True # empty body is true
```

The following provides a simple unit test that is hard wired for triv_KB:

```
from logicProblem import triv_KB

def test():
  a1 = prove(triv_KB,['i_am'])
  assert a1, "triv_KB proving i_am gave "+str(a1)
  a2 = prove(triv_KB,['i_smell'])
  assert not a2, "triv_KB proving i_smell gave "+str(a2it)
  print("Passed unit tests")
  if __name__ == "__main__":
    test()
    # try
from logicProblem import elect
# elect.max_display_level=3 # give detailed trace
# prove(elect,['live_w6'])
# prove(elect,['lit_l1'])
```

Exercise 5.4 This code can re-ask a question multiple times. Implement this code so that it only asks a question once and remembers the answer. Also implement a function to forget the answers.

Exercise 5.5 What search method is this using? Implement the search interface so that it can use \(A^*\) or other searching methods. Define an admissible heuristic that is not always 0.
5.4 Assumables

Atom a can be made assumable by including $\text{Assumable}(a)$ in the knowledge base. A knowledge base that can include assumables is declared with KBA.

```python
from logicProblem import Clause, Askable, KB, yes
class Assumable(object):
    """An askable atom""
    def __init__(self, atom):
        """clause with atom head and lost of atoms body""
        self.atom = atom
    def __str__(self):
        """returns the string representation of a clause."
        return "assumable " + self.atom + "."
class KBA(KB):
    """A knowledge base that can include assumables""
    def __init__(self, statements):
        self.assumables = [c.atom for c in statements if isinstance(c, Assumable)]
        KB.__init__(self, statements)
```

The top-down Horn clause interpreter, prove_all_ass returns a list of the sets of assumables that imply ans_body. This list will contain all of the minimal sets of assumables, but can also find non-minimal sets, and repeated sets, if they can be generated with separate proofs. The set assumed is the set of assumables already assumed.

```python
def prove_all_ass(self, ans_body, assumed=set()):
    """returns a list of sets of assumables that extends assumed to imply ans_body from self. ans_body is a list of atoms (it is the body of the answer clause). assumed is a set of assumables already assumed"
    if ans_body:
        selected = ans_body[0] # select first atom from ans_body
        if selected in self.askables:
            if yes(input("Is " + selected + " true? ")):
                return self.prove_all_ass(ans_body[1:], assumed)
            else:
                return [] # no answers
        elif selected in self.assumables:
            return self.prove_all_ass(ans_body[1:], assumed|{selected})
        else:
            return [ass
            for cl in self.clauses_for_atom(selected)]
```

http://aipython.org Version 0.7.7 August 8, 2019
5.4. Assumables

```python
for ass in self.prove_all_ass(cl.body+ans_body[1:], assumed)
    # union of answers for each clause with head=selected
else:
    # empty body
    return [assumed]  # one answer

def conflicts(self):
    """returns a list of minimal conflicts""
    return minsets(self.prove_all_ass(['false']))

Given a list of sets, minsets returns a list of the minimal sets in the list. For example, minsets([[2, 3, 4], [2, 3], [6, 2, 3], [2, 3], [2, 4, 5]]) returns [[2, 3], [2, 4, 5]].

def minsets(ls):
    """ls is a list of sets
returns a list of minimal sets in ls
"
    ans = []  # elements known to be minimal
    for c in ls:
        if not any(c1<c for c1 in ls) and not any(c1 <= c for c1 in ans):
            ans.append(c)
    return ans

# minsets([[2, 3, 4], [2, 3], [6, 2, 3], [2, 3], [2, 4, 5]])

Warning: minsets works for a list of sets or for a set of (frozen) sets, but it does not work for a generator of sets. For example, try to predict and then test:

minsets(e for e in [[2, 3, 4], [2, 3], [6, 2, 3], [2, 3], [2, 4, 5]])

The diagnoses can be constructed from the (minimal) conflicts as follows. This also works if there are non-minimal conflicts, but is not as efficient.

def diagnoses(cons):
    """cons is a list of (minimal) conflicts.
returns a list of diagnoses.""
    if cons == []:
        return [set()]
    else:
        return minsets([[{e}|d])  # | is set union
                        for e in cons[0]
                        for d in diagnoses(cons[1:]))

Test cases:

electa = KBA([Clause('light_l1'),
               Clause('light_l2'),
               Assumable('ok_l1'),
               Assumable('ok_l2'),
```

http://aipython.org

Version 0.7.7 August 8, 2019
Assumable('ok_s1'),
Assumable('ok_s2'),
Assumable('ok_s3'),
Assumable('ok_cb1'),
Assumable('ok_cb2'),
Assumable('live_outside'),
Clause('live_l1', ['live_w0']),
Clause('live_w0', ['up_s2', 'ok_s2', 'live_w1']),
Clause('live_w0', ['down_s2', 'ok_s2', 'live_w2']),
Clause('live_w1', ['up_s1', 'ok_s1', 'live_w3']),
Clause('live_w2', ['down_s1', 'ok_s1', 'live_w3']),
Clause('live_l2', ['live_w4']),
Clause('live_w4', ['up_s3', 'ok_s3', 'live_w3']),
Clause('live_w3', ['live_w5', 'ok_cb1']),
Clause('live_p_1', ['live_w3']),
Clause('live_w3', ['live_w5', 'ok_cb1']),
Clause('live_p_2', ['live_w6']),
Clause('live_w6', ['live_w5', 'ok_cb2']),
Clause('live_w5', ['live_outside']),
Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
Clause('lit_l2', ['light_l2', 'live_l2', 'ok_l2']),
Askable('up_s1'),
Askable('down_s1'),
Askable('up_s2'),
Askable('down_s2'),
Askable('up_s3'),
Askable('down_s2'),
Askable('dark_l1'),
Askable('dark_l2'),
Clause('false', ['dark_l1', 'lit_l1']),
Clause('false', ['dark_l2', 'lit_l2'])
]
electa.prove_all_ass(['false'])
cs=electa.conflicts()
print(cs)
diagnoses(cs) # diagnoses from conflicts

Exercise 5.6 To implement a version of conflicts that never generates non-minimal conflicts, modify prove_all_ass to implement iterative deepening on the number of assumables used in a proof, and prune any set of assumables that is a superset of a conflict.

Exercise 5.7 Implement explanations(self, body), where body is a list of atoms, that returns the a list of the minimal explanations of the body. This does not require modification of prove_all_ass.

Exercise 5.8 Implement explanations, as in the previous question, so that it never generates non-minimal explanations. Hint: modify prove_all_ass to implement iterative deepening on the number of assumptions, generating conflicts and explanations together, and pruning as early as possible.
Planning with Certainty

6.1 Representing Actions and Planning Problems

The STRIPS representation of an action consists of:

- preconditions: a dictionary of feature:value pairs that specifies that the feature must have this value for the action to be possible.

- effects: a dictionary of feature:value pairs that are made true by this action. In particular, a feature in the dictionary has the corresponding value (and not its previous value) after the action, and a feature not in the dictionary keeps its old value.

```python
class Strips(object):
    def __init__(self, preconditions, effects, cost=1):
        
        defines the STRIPS representation for an action:
        * preconditions is feature:value dictionary that must hold
          for the action to be carried out
        * effects is a feature:value map that this action makes
          true. The action changes the value of any feature specified
          here, and leaves other properties unchanged.
        * cost is the cost of the action
        
        self.preconditions = preconditions
        self.effects = effects
        self.cost = cost
```

A STRIPS domain consists of:
• A set of actions.

• A dictionary that maps each feature into a set of possible values for the feature.

• A dictionary that maps each action into a STRIPS representation of the action.

```python
class STRIPS_domain(object):
    def __init__(self, feats_vals, strips_map):
        '''Problem domain
        feats_vals is a feature:domain dictionary,
        mapping each feature to its domain
        strips_map is an action:strips dictionary,
        mapping each action to its Strips representation
        '''
        self.actions = set(strips_map)  # set of all actions
        self.feats_vals = feats_vals
        self.strips_map = strips_map

6.1.1 Robot Delivery Domain
The following specifies the robot delivery domain of Chapter 8.
```

```python
boolean = {True, False}
delivery_domain = STRIPS_domain(
    {'Loc': {'cs', 'off', 'lab', 'mr'}, 'RHC': boolean, 'SWC': boolean,
     'MW': boolean, 'RHM': boolean},  # features:values dictionary
    {'mc_cs': Strips({'RLoc': 'cs'}, {'RLoc': 'off'}),
     'mc_off': Strips({'RLoc': 'off'}, {'RLoc': 'lab'}),
     'mc_lab': Strips({'RLoc': 'lab'}, {'RLoc': 'mr'}),
     'mc_mr': Strips({'RLoc': 'mr'}, {'RLoc': 'cs'}),
     'mcc_cs': Strips({'RLoc': 'cs'}, {'RLoc': 'mr'}),
     'mcc_off': Strips({'RLoc': 'off'}, {'RLoc': 'cs'}),
     'mcc_lab': Strips({'RLoc': 'lab'}, {'RLoc': 'off'}),
     'mcc_mr': Strips({'RLoc': 'mr'}, {'RLoc': 'lab'}),
     'puc': Strips({'RLoc': 'cs', 'RHC': False}, {'RHC': True}),
     'dc': Strips({'RLoc': 'off', 'RHC': True}, {'RHC': False, 'SWC': False}),
     'pum': Strips({'RLoc': 'mr', 'MW': True}, {'RHM': True, 'MW': False}),
     'dm': Strips({'RLoc': 'off', 'RHM': True}, {'RHM': False})
}
```

A planning problem consists of a planning domain, an initial state, and a goal. The goal does not need to fully specify the final state.
6.1.2 Blocks World

The blocks world consist of blocks and a table. Each block can be on the table or on another block. A block can only have one other block on top of it. Figure 6.1 shows 3 states with some of the actions between them. The following
represents the blocks world. Note that the actions and the conditions are all strings.

```python
### blocks world

def move(x,y,z):
    """string for the 'move' action""
    return 'move_+'+x+'_from_+'+y+'_to_+'+z

def on(x,y):
    """string for the 'on' feature""
    return x+'_on_+'+y

def clear(x):
    """string for the 'clear' feature""
    return 'clear_+'+x

def create_blocks_world(blocks = ['a','b','c','d']):
    blocks_and_table = blocks + ['table']
    stmap = {move(x,y,z):Strips({on(x,y):True, clear(x):True, clear(z):True},
                                  {on(x,z):True, on(x,y):False, clear(y):True, clear(z):False})
              for x in blocks
              for y in blocks_and_table
              for z in blocks
              if x!=y and y!=z and z!=x}
    stmap.update({move(x,y,'table'):Strips({on(x,y):True, clear(x):True},
                                             {on(x,'table'):True, on(x,y):False, clear(y):True})
                   for x in blocks
                   for y in blocks_and_table
                   if x!=y})
    feats_vals = {on(x,y):boolean for x in blocks for y in blocks_and_table}
    feats_vals.update({move(x,y,z):Strips({on(x,y):True, clear(x):True, clear(z):True},
                                          {on(x,y):False, clear(x):True})
                       for x in blocks
                       for y in blocks
                       if x!=y})
    return STRIPS_domain(feats_vals, stmap)
```

This is a classic example, with 3 blocks, and the goal consists of two conditions.

```python
blocks1dom = create_blocks_world(['a','b','c'])
blocks1 = Planning_problem(blocks1dom,
    {on('a','table'):True, clear('a'):True, clear('b'):True, on('b','c'):True,
     on('c','table'):True, clear('c'):False}, # initial state
    {on('a','b'):True, on('c','a'):True}) # goal
```

This is a problem of inverting a tower of size 4.

```python
blocks2dom = create_blocks_world(['a','b','c','d'])
tower4 = {clear('a'):True, on('a','b'):True, clear('b'):False,
          on('b','c'):True, clear('c'):False, on('c','d'):True,
          clear('b'):False, on('d','table'):True}
bblocks2 = Planning_problem(blocks2dom,
    tower4, # initial state
    {on('d','c'):True, on('c','b'):True, on('b','a'):True}) # goal
```

Moving bottom block to top of a tower of size 4.
Exercises

Exercise 6.1 Represent the problem of given a tower of 4 blocks (a on b on c on d on table), the goal is to have a tower with the previous top block on the bottom (b on c on d on a). Do not include the table in your goal (the goal does not care whether a is on the table). [Before you run the program, estimate how many steps it will take to solve this.] How many steps does an optimal planner take?

Exercise 6.2 The representation of the state does not include negative on facts. Does it need to? Why or why not? (Note that this may depend on the planner; write your answer with respect to particular planners.)

Exercise 6.3 It is possible to write the representation of the problem without using clear, where clear(x) means nothing is on x. Change the definition of the blocks world so that it does not use clear but uses on being false instead. Does this work better for any of the planners? (Does this change an answer to the previous question?)

6.2 Forward Planning

To run the demo, in folder “aipython”, load “stripsForwardPlanner.py”, and copy and paste the commented-out example queries at the bottom of that file.

In a forward planner, a node is a state. A state consists of an assignment, which is a variable:value dictionary. In order to be able to do multiple-path pruning, we need to define a hash function, and equality between states.

```python
from searchProblem import Arc, Search_problem
from stripsProblem import Strips, STRIPS_domain

class State(object):
    def __init__(self, assignment):
        self.assignment = assignment
        self.hash_value = None
    def __hash__(self):
        if self.hash_value is None:
            self.hash_value = hash(frozenset(self.assignment.items()))
        return self.hash_value
    def __eq__(self, st):
        return self.assignment == st.assignment
    def __str__(self):
        return str(self.assignment)
```
In order to define a search problem (page 31), we need to define the goal condition, the start nodes, the neighbours, and (optionally) a heuristic function. Here zero is the default heuristic function.

```python
def zero(*args,**nargs):
    """always returns 0""
    return 0

class Forward_STRIPS(Search_problem):
    """A search problem from a planning problem where:
    * a node is a state object.
    * the dynamics are specified by the STRIPS representation of actions
    """
    def __init__(self, planning_problem, heur=zero):
        """creates a forward search space from a planning problem.
        heur(state,goal) is a heuristic function,
        an underestimate of the cost from state to goal, where
        both state and goals are feature:value dictionaries.
        """
        self.prob_domain = planning_problem.prob_domain
        self.initial_state = State(planning_problem.initial_state)
        self.goal = planning_problem.goal
        self.heur = heur

    def is_goal(self, state):
        """is True if node is a goal.
        Every goal feature has the same value in the state and the goal.""
        state_asst = state.assignment
        return all(prop in state_asst and state_asst[prop]==self.goal[prop] for prop in self.goal)

    def start_node(self):
        """returns start node""
        return self.initial_state

    def neighbors(self,state):
        """returns neighbors of state in this problem"
        cost=1
        state_asst = state.assignment
        return [ Arc(state,self.effect(act,state_asst),cost,act)
                 for act in self.prob_domain.actions
                 if self.possible(act,state_asst)]

    def possible(self,act,state_asst):
        """True if act is possible in state.
        act is possible if all of its preconditions have the same value in the state"
        preconds = self.prob_domain.strips_map[act].preconditions
        return all(pre in state_asst and state_asst[pre]==preconds[pre])
```

http://aipython.org

Version 0.7.7
August 8, 2019
for pre in preconds)

def effect(self, act, state_asst):
 """returns the state that is the effect of doing act given state_asst""
 new_state_asst = self.prob_domain.strips_map[act].effects.copy()
 for prop in state_asst:
 if prop not in new_state_asst:
 new_state_asst[prop] = state_asst[prop]
 return State(new_state_asst)

def heuristic(self, state):
 """in the forward planner a node is a state.
 the heuristic is an (under)estimate of the cost
 of going from the state to the top-level goal.
 ""
 return self.heur(state.assignment, self.goal)

Here are some test cases to try.

from searchBranchAndBound import DF_branch_and_bound
from searchGeneric import AStarSearcher
from searchMPP import SearcherMPP
from stripsProblem import problem0, problem1, problem2, blocks1, blocks2, blocks3

AStarSearcher(ForwardSTRIPS(problem1)).search() #A*
SearcherMPP(ForwardSTRIPS(problem1)).search() #A* with MPP
DF_branch_and_bound(ForwardSTRIPS(problem1),10).search() #B&B
To find more than one plan:
s1 = SearcherMPP(ForwardSTRIPS(problem1)) #A*
s1.search() #find another plan

6.2.1 Defining Heuristics for a Planner

Each planning domain requires its own heuristics. If you change the actions,
you will need to reconsider the heuristic function, as there might then be a
lower-cost path, which might make the heuristic non-admissible.

Here is an example of defining a (not very good) heuristic for the coffee
delivery planning domain.

First we define the distance between two locations, which is used for the
heuristics.

def dist(loc1, loc2):
 """returns the distance from location loc1 to loc2"
 ""
 if loc1==loc2:
 return 0
 if {loc1, loc2} in [{'cs','lab'},{'mr','off'}]:

http://aipython.org Version 0.7.7 August 8, 2019
6. Planning with Certainty

```python
    return 2
else:
    return 1
```

Note that the current state is a complete description; there is a value for every feature. However the goal need not be complete; it does not need to define a value for every feature. Before checking the value for a feature in the goal, a heuristic needs to define whether the feature is defined in the goal.

```python
def h1(state, goal):
    """the distance to the goal location, if there is one""
    if 'RLoc' in goal:
        return dist(state['RLoc'], goal['RLoc'])
    else:
        return 0

def h2(state, goal):
    """the distance to the coffee shop plus getting coffee and delivering it
    if the robot needs to get coffee"
    if ('SWC' in goal and goal['SWC']==False
        and state['SWC']==True
        and state['RHC']==False):
        return dist(state['RLoc'], 'cs')+3
    else:
        return 0
```

The maximum of the values of a set of admissible heuristics is also an admissible heuristic. The function `maxh` takes a number of heuristic functions as arguments, and returns a new heuristic function that takes the maximum of the values of the heuristics. For example, `h1` and `h2` are heuristic functions and so `maxh(h1, h2)` is also. `maxh` can take an arbitrary number of arguments.

```python
def maxh(*heuristics):
    """Returns a new heuristic function that is the maximum of the functions in heuristics.
    heuristics is the list of arguments which must be heuristic functions.
    ""
    return lambda state, goal: max(h(state, goal) for h in heuristics)
```

The following runs the example with and without the heuristic. (Also try using `AStarSearcher` instead of `SearcherMPP`.)

```python
##### Forward Planner ######
from searchGeneric import AStarSearcher
from searchMPP import SearcherMPP
from stripsForwardPlanner import Forward_STrips
from stripsProblem import problem0, problem1, problem2
```

http://aipython.org
6.3. Regression Planning

```python
def test_forward_heuristic(thisproblem=problem1):
    print("\n***** FORWARD NO HEURISTIC")
    print(SearcherMPP(Forward_STRIPS(thisproblem)).search())
    print("\n***** FORWARD WITH HEURISTIC h1")
    print(SearcherMPP(Forward_STRIPS(thisproblem,h1)).search())
    print("\n***** FORWARD WITH HEURISTICS h1 and h2")
    print(SearcherMPP(Forward_STRIPS(thisproblem,maxh(h1,h2))).search())

if __name__ == '__main__':
    test_forward_heuristic()
```

Exercise 6.4 Try the forward planner with a heuristic function of just \(h_1 \), with just \(h_2 \) and with both. Explain how each one prunes or doesn’t prune the search space.

Exercise 6.5 Create a better heuristic than \(\text{maxh}(h_1, h_2) \). Try it for a number of different problems.

Exercise 6.6 Create an admissible heuristic for the blocks world.

6.3 Regression Planning

To run the demo, in folder “aipython”, load "stripsRegressionPlanner.py", and copy and paste the commented-out example queries at the bottom of that file.

In a regression planner a node is a subgoal that need to be achieved.

A Subgoal object consists of an assignment, which is \(\text{variable: value} \) dictionary. We make it hashable so that multiple path pruning can work. The hash is only computed when necessary (and only once).

```python
from searchProblem import Arc, Search_problem

class Subgoal(object):
    def __init__(self, assignment):
        self.assignment = assignment
        self.hash_value = None
    def __hash__(self):
        if self.hash_value is None:
            self.hash_value = hash(frozenset(self.assignment.items()))
        return self.hash_value
    def __eq__(self, st):
        return self.assignment == st.assignment
    def __str__(self):
        return str(self.assignment)
```

http://aipython.org Version 0.7.7 August 8, 2019
A regression search has subgoals as nodes. The initial node is the top-level goal of the planner. The goal for the search (when the search can stop) is a subgoal that holds in the initial state.

```python
from stripsForwardPlanner import zero
class Regression_STRIPS(Search_problem):
    """A search problem where:
    * a node is a goal to be achieved, represented by a set of propositions.
    * the dynamics are specified by the STRIPS representation of actions
    """
    def __init__(self, planning_problem, heur=zero):
        """creates a regression search space from a planning problem.
        heur(state,goal) is a heuristic function;
        an underestimate of the cost from state to goal, where
        both state and goals are feature:value dictionaries
        """
        self.prob_domain = planning_problem.prob_domain
        self.top_goal = Subgoal(planning_problem.goal)
        self.initial_state = planning_problem.initial_state
        self.heur = heur

    def is_goal(self, subgoal):
        """if subgoal is true in the initial state, a path has been found"
        goal_asst = subgoal.assignment
        return all((g in self.initial_state) and (self.initial_state[g]==goal_asst[g])
                    for g in goal_asst)

    def start_node(self):
        """the start node is the top-level goal"
        return self.top_goal

    def neighbors(self,subgoal):
        """returns a list of the arcs for the neighbors of subgoal in this problem"
        cost = 1
        goal_asst = subgoal.assignment
        return [ Arc(subgoal,self.weakest_precond(act,goal_asst),cost,act)
                 for act in self.prob_domain.actions
                 if self.possible(act,goal_asst)]

    def possible(self,act,goal_asst):
        """True if act is possible to achieve goal_asst.
        the action achieves an element of the effects and
        the action doesn’t delete something that needs to be achieved and
        the preconditions are consistent with other subgoals that need to be achieved
        """
        effects = self.prob_domain.strips_map[act].effects
```
6.3. Regression Planning

```python
preconds = self.prob_domain.strips_map[act].preconditions
return (any(goal_asst[prop]==effects[prop]
    for prop in effects if prop in goal_asst)
    and all(goal_asst[prop]==effects[prop]
    for prop in effects if prop in goal_asst)
    and all(goal_asst[prop]==preconds[prop]
    for prop in preconds if prop not in effects and prop in goal_asst)
)

def weakest_precond(self,act,goal_asst):
    """returns the subgoal that must be true so goal_asst holds after act""
    new_asst = self.prob_domain.strips_map[act].preconditions.copy()
    for g in goal_asst:
        if g not in self.prob_domain.strips_map[act].effects:
            new_asst[g] = goal_asst[g]
    return Subgoal(new_asst)

def heuristic(self,subgoal):
    """in the regression planner a node is a subgoal.
    the heuristic is an (under)estimate of the cost of going from the initial state to subgoal.
    """
    return self.heur(self.initial_state, subgoal.assignment)
```

Exercise 6.7 Multiple path pruning could be used to prune more than the current code. In particular, if the current node contains more conditions than a previously visited node, it can be pruned. For example, if \{a: True, b: False\} has been visited, then any node that is a superset, e.g., \{a: True, b: False, d: True\}, need not be expanded. If the simpler subgoal does not lead to a solution, the more complicated one wont either. Implement this more severe pruning. (Hint: This may require modifications to the searcher.)

Exercise 6.8 It is possible that, as knowledge of the domain, that some assignment of values to variables can never be achieved. For example, the robot cannot be holding mail when there is mail waiting (assuming it isn’t holding mail initially). An assignment of values to (some of the) variables is incompatible if no possible (reachable) state can include that assignment. For example, \{'MW': True, 'RHM': True\} is an incompatible assignment. This information may be useful information for a planner; there is no point in trying to achieve these together. Define a subclass of STRIPS_domain that can accept a list of incompatible
assignments. Modify the regression planner code to use such a list of incompatible assignments. Give an example where the search space is smaller.

Exercise 6.9 After completing the previous exercise, design incompatible assignments for the blocks world. (This should result in dramatic search improvements.)

6.3.1 Defining Heuristics for a Regression Planner

The regression planner can use the same heuristic function as the forward planner. However, just because a heuristic is useful for a forward planner does not mean it is useful for a regression planner, and vice versa. You should experiment with whether the same heuristic works well for both a regression planner and a forward planner.

The following runs the same example as the forward planner with and without the heuristic defined for the forward planner:

```python
# Regression Planner
from stripsRegressionPlanner import Regression_STRIPS

def test_regression_heuristic(thisproblem=problem1):
    print("***** REGRESSION NO HEURISTIC")
    print(SearcherMPP(Regression_STRIPS(thisproblem)).search())

    print("***** REGRESSION WITH HEURISTICs h1 and h2")
    print(SearcherMPP(Regression_STRIPS(thisproblem,maxh(h1,h2))).search())

if __name__ == "__main__":
    test_regression_heuristic()
```

Exercise 6.10 Try the regression planner with a heuristic function of just h_1 and with just h_2 (defined in Section 6.2.1). Explain how each one prunes or doesn’t prune the search space.

Exercise 6.11 Create a better heuristic than heuristic function defined in Section 6.2.1.

6.4 Planning as a CSP

Here we implement the CSP planner assuming there is a single action at each step. This creates a CSP that can use any of the CSP algorithms to solve (e.g., stochastic local search or arc consistency with domain splitting).

This assumes the same action representation as before; we do not consider factored actions (action features), nor do we implement state constraints.

http://aipython.org
from cspProblem import CSP, Constraint

class CSP_from_STRIPS(CSP):
 """A CSP where:
 * a CSP variable is constructed by st(var,stage).
 * the dynamics are specified by the STRIPS representation of actions
 """

def __init__(self, planning_problem, number_stages=2):
 prob_domain = planning_problem.prob_domain
 initial_state = planning_problem.initial_state
 goal = planning_problem.goal
 self.act_vars = [st('Var',stage) for stage in range(number_stages)]
 domains = {av:prob_domain.actions for av in self.act_vars}
 domains.update({ st(var,stage):dom
 for (var,dom) in prob_domain.feats_vals.items() for stage in range(number_stages+1)})

 # initial state constraints:
 constraints = [Constraint((st(var,0),), is_(val))
 for (var,val) in initial_state.items()]

 # goal constraints on the final state:
 constraints += [Constraint((st(var,number_stages),), is_(val))
 for (var,val) in goal.items()]

 # precondition constraints:
 constraints += [Constraint((st(var,stage), st('Var',stage)),
 if_(val,act)) # st(var,stage)==val if st('Var',stage)=act
 for act,strps in prob_domain.strips_map.items() for var,val in strps.preconditions.items() for stage in range(number_stages)]

 # effect constraints:
 constraints += [Constraint((st(var,stage+1), st('Var',stage)),
 if_(val,act)) # st(var,stage+1)==val if st('Var',stage)==act
 for act,strps in prob_domain.strips_map.items() for var,val in strps.effects.items() for stage in range(number_stages)]

 # frame constraints:
 constraints += [Constraint((st(var,stage), st('Var',stage), st(var,stage+1)),
 eq_if_not_in_(act for act in prob_domain.actions
 if var in prob_domain.strips_map[act].effects))
 for var in prob_domain.feats_vals for stage in range(number_stages)]

 CSP.__init__(self, domains, constraints)

def extract_plan(self,soln):
 return [soln[a] for a in self.act_vars]

def st(var,stage):
 """returns a string for the var-stage pair that can be used as a variable"""
return str(var) + "_" + str(stage)

The following methods return methods which can be applied to the particular environment.

For example, is_.(3) returns a function that when applied to 3, returns True and when applied to any other value returns False. So is_.(3)(3) turns True and is_.(3)(7) returns False.

Note that the underscore (’_’) is part of the name; here we use it as the convention that it is a function that returns a function. This uses two different styles to define is_ and if_; returning a function defined by lambda is equivalent to returning the embedded function, except that the embedded function has a name. The embedded function can also be given a docstring.

```python
def is_(val):
    """returns a function that is true when it is applied to val.
    """
    return lambda x: x == val

def if_(v1, v2):
    """if the second argument is v2, the first argument must be v1"
    return lambda x1, x2: x1 == v1 if x2 == v2 else True

def eq_if_not_in_(actset):
    """first and third arguments are equal if action is not in actset"
    return lambda x1, a, x2: x1 == x2 if a not in actset else True
```

Putting it together, this returns a list of actions that solves the problem prob for a given horizon. If you want to do more than just return the list of actions, you might want to get it to return the solution. Or even enumerate the solutions (by using Search_with_AC_from_CSP).

```python
def con_plan(prob, horizon):
    """finds a plan for problem prob given horizon.
    """
    csp = CSP_from_STRIPSPS(prob, horizon)
    sol = Con_solver(csp).solve_one()
    return csp.extract_plan(sol) if sol else sol
```

The following are some example queries.
6.5. Partial-Order Planning

To run the demo, in folder “aipython”, load “stripsPOP.py”, and copy and paste the commented-out example queries at the bottom of that file.

A partial order planner maintains a partial order of action instances. An action instance consists of a name and an index. We need action instances because the same action could be carried out at different times.
6. Planning with Certainty

```python
import random

class Action_instance(object):
    next_index = 0
    def __init__(self, action, index=None):
        if index is None:
            index = Action_instance.next_index
            Action_instance.next_index += 1
        self.action = action
        self.index = index

    def __str__(self):
        return str(self.action) + "#" + str(self.index)

    __repr__ = __str__  # __repr__ function is the same as the __str__ function
```

A node (as in the abstraction of search space) in a partial-order planner consists of:

- **actions**: a set of action instances.
- **constraints**: a set of \((a_1,a_2)\) pairs, where \(a_1\) and \(a_2\) are action instances, which represents that \(a_1\) must come before \(a_2\) in the partial order. There are a number of ways that this could be represented. Here we represent the set of pairs that are in transitive closure of the before relation. This lets us quickly determine whether some before relation is consistent with the current constraints.
- **agenda**: a list of \((s,a)\) pairs, where \(s\) is a \((\text{var},\text{val})\) pair and \(a\) is an action instance. This means that variable \(\text{var}\) must have value \(\text{val}\) before \(a\) can occur.
- **causal_links**: a set of \((a_0,g,a_1)\) triples, where \(a_1\) and \(a_2\) are action instances and \(g\) is a \((\text{var},\text{val})\) pair. This holds when action \(a_0\) makes \(g\) true for action \(a_1\).
self.constraints = constraints # a set of (a0,a1) pairs
self.agenda = agenda # list of (subgoal, action) pairs to be achieved
self.causal_links = causal_links # set of (a0,g,a1) triples

def __str__(self):
 return "actions: "+str({str(a) for a in self.actions})+
 "constraints: "+
 str({(str(a1),str(a2)) for (a1,a2) in self.constraints})+
 "agenda: "+
 str({(str(s),str(a)) for (s,a) in self.agenda})+
 "causal_links: "+
 str({(str(a0),str(g),str(a2)) for (a0,g,a2) in self.causal_links})

extract_plan constructs a total order of action instances that is consistent with the partial order.

def extract_plan(self):
 """returns a total ordering of the action instances consistent
 with the constraints.
 raises IndexError if there is no choice.
 """
 sorted_acts = []
 other_acts = set(self.actions)
 while other_acts:
 a = random.choice([a for a in other_acts if
 all(((a1,a) not in self.constraints) for a1 in other_acts)])
 sorted_acts.append(a)
 other_acts.remove(a)
 return sorted_acts

POP_search_from_STrips is an instance of a search problem. As such, we need to define the start nodes, the goal, and the neighbors of a node.

class POP_search_from_STrips(Search_problem, Displayable):
 def __init__(self, planning_problem):
 Search_problem.__init__(self)
 self.planning_problem = planning_problem
 self.start = Action_instance("start")
 self.finish = Action_instance("finish")

 def is_goal(self, node):
 return node.agenda == []

 def start_node(self):
 constraints = {(self.start, self.finish)}
 agenda = [(g, self.finish) for g in self.planning_problem.goal.items()]
 return POP_node([self.start,self.finish], constraints, agenda, [])
The `neighbors` method is a coroutine that enumerates the neighbors of a given node.

```python
def neighbors(self, node):
    """enumerates the neighbors of node""
    self.display(3,"finding neighbors of\n",node)
    if node.agenda:
        subgoal, ac1 = node.agenda[0]
        self.display(2,"selecting",subgoal,"for",act1)
        new_agenda = node.agenda[1:]  
        for act0 in node.actions:
            if (self.achieves(act0, subgoal) and
                self.possible((act0, act1),node.constraints)):
                self.display(2," reusing",act0)  
                consts1 = self.add_constraint((act0,act1),node.constraints)
                new_clink = (act0,subgoal,act1)
                new_cls = node.causal_links + [new_clink]
                for consts2 in self.protect_cl_for_actions(node.actions,consts1,new_clink):
                    yield Arc(node,
                                POP_node(node.actions,consts2,new_agenda,new_cls),
                                cost=0)
                for a0 in self.planning_problem.prob_domain.strips_map: #a0 is an action
                    if self.achieves(a0, subgoal):
                        #a0 achieves subgoal
                        new_a = Action_instance(a0)
                        self.display(2," using new action",new_a)
                        new_actions = node.actions + [new_a]
                        consts1 = self.add_constraint(((self.start,new_a),node.constraints)
                        consts2 = self.add_constraint((new_a,act1),consts1)
                        preconds = self.planning_problem.prob_domain.strips_map[a0].preconditions
                        new_agenda = new_agenda + [(pre,new_a) for pre in preconds.items()]
                        new_clink = (new_a,subgoal,act1)
                        new_cls = node.causal_links + [new_clink]
                        for consts3 in self.protect_all_cls(node.causal_links,new_a,consts2):
                            for consts4 in self.protect_cl_for_actions(node.actions,consts3,new_clink):
                                yield Arc(node,
                                            POP_node(new_actions,consts4,new_agenda,new_cls),
                                            cost=1)
```

Given a causal link \((a_0, subgoal, a_1)\), the following method protects the causal link from each action in `actions`. Whenever an action deletes `subgoal`, the action needs to be before \(a_0\) or after \(a_1\). This method enumerates all constraints that result from protecting the causal link from all actions.

```python
def protect_cl_for_actions(self, actions, constrs, clink):
    """yields constraints that extend constrs and
    protect causal link \((a_0, subgoal, a_1)\)
    for each action in actions
    """
```
if actions:
 a = actions[0]
 rem_actions = actions[1:]
 a0, subgoal, a1 = clink
 if a != a0 and a != a1 and self.deletes(a, subgoal):
 if self.possible((a, a0), constrs):
 new_const = self.add_constraint((a, a0), constrs)
 for e in self.protect_cl_for_actions(rem_actions, new_const, clink): yield e
 # could be "yield from"
 if self.possible((a1, a), constrs):
 new_const = self.add_constraint((a1, a), constrs)
 for e in self.protect_cl_for_actions(rem_actions, new_const, clink): yield e
 else:
 for e in self.protect_cl_for_actions(rem_actions, constrs, clink): yield e
 else:
 yield constrs

Given an action act, the following method protects all the causal links in clinks from act. Whenever act deletes subgoal from some causal link (a0, subgoal, a1), the action act needs to be before a0 or after a1. This method enumerates all constraints that result from protecting the causal links from act.

def protect_all_cls(self, clinks, act, constrs):
 """yields constraints that protect all causal links from act""
 if clinks:
 (a0, cond, a1) = clinks[0] # select a causal link
 rem_clinks = clinks[1:] # remaining causal links
 if act != a0 and act != a1 and self.deletes(act, cond):
 if self.possible((act, a0), constrs):
 new_const = self.add_constraint((act, a0), constrs)
 for e in self.protect_all_cls(rem_clinks, act, new_const): yield e
 if self.possible((a1, act), constrs):
 new_const = self.add_constraint((a1, act), constrs)
 for e in self.protect_all_cls(rem_clinks, act, new_const): yield e
 else:
 for e in self.protect_all_cls(rem_clinks, act, constrs): yield e
 else:
 yield constrs

The following methods check whether an action (or action instance) achieves or deletes some subgoal.

def achieves(self, action, subgoal):
 var, val = subgoal
 return var in self.effects(action) and self.effects(action)[var] == val
def deletes(self, action, subgoal):
 var, val = subgoal
 return var in self.effects(action) and self.effects(action)[var] != val
def effects(self, action):
 """returns the variable:value dictionary of the effects of action.
 works for both actions and action instances""
 if isinstance(action, Action_instance):
 action = action.action
 if action == "start":
 return self.planning_problem.initial_state
 elif action == "finish":
 return {}
 else:
 return self.planning_problem.prob_domain.strips_map[action].effects

The constraints are represented as a set of pairs closed under transitivity.
Thus if \((a, b)\) and \((b, c)\) are the list, then \((a, c)\) must also be in the list. This means
that adding a new constraint means adding the implied pairs, but querying
whether some order is consistent is quick.

def add_constraint(self, pair, const):
 if pair in const:
 return const
 todo = [pair]
 newconst = const.copy()
 while todo:
 x0, x1 = todo.pop()
 newconst.add((x0, x1))
 for x, y in newconst:
 if x == x1 and (x0, y) not in newconst:
 todo.append((x0, y))
 if y == x0 and (x, x1) not in newconst:
 todo.append((x, x1))
 return newconst

def possible(self, pair, constraint):
 (x, y) = pair
 return (y, x) not in constraint

Some code for testing:

from searchBranchAndBound import DF_branch_and_bound
from searchGeneric import AStarSearcher
from searchMPP import SearcherMPP
from stripsProblem import problem0, problem1, problem2
rplanning0 = POP_search_from_STRIPS(problem0)
rplanning1 = POP_search_from_STRIPS(problem1)
rplanning2 = POP_search_from_STRIPS(problem2)
searcher0 = DF_branch_and_bound(rplanning0,5)
searcher0a = AStarSearcher(rplanning0)
6.5. Partial-Order Planning

searcher1 = DF_branch_and_bound(rplanning1,10)
searcher1a = AStarSearcher(rplanning1)
searcher2 = DF_branch_and_bound(rplanning2,10)
searcher2a = AStarSearcher(rplanning2)

Try one of the following searchers
a = searcher0.search()
a = searcher0a.search()
a = searcher1.search()
a = searcher1a.search()
a = searcher2.search()
a = searcher2a.search()

http://aipython.org Version 0.7.7 August 8, 2019
A good source of datasets is the UCI machine Learning Repository [?]; the SPECT and car datasets are from this repository.

7.1 Representations of Data and Predictions

The code uses the following definitions and conventions:

- A **data set** is an enumeration of examples.

- An **example** is a list (or tuple) of feature values. The feature values can be numbers or strings.

- A **feature** is a function from examples into the range of the feature. We assume each feature has a variable `frange` that gives the range of the feature.

 A **Boolean feature** is a function from the examples into `{False, True}`. So, if `f` is a Boolean feature, `f.frange == [False, True]`, and if `e` is an example, `f(e)` is either `True` or `False`.

 The `__doc__` variable of the function contains the docstring, a string description of the function.
When creating a data set, we partition the data into a training set \((train)\) and a
test set \((test)\). The target feature is the feature that we are making a prediction
of.

```python
learnProblem.py — (continued)

```class Data_set(Displayable):
 """ A data set consists of a list of training data and a list of test data.
 """
 seed = None #123456 # make it None for a different test set each time

def __init__(self, train, test=None, prob_test=0.30, target_index=0, header=None):
 """A dataset for learning.
 train is a list of tuples representing the training examples
 test is the list of tuples representing the test examples
 if test is None, a test set is created by selecting each
 example with probability prob_test
 target_index is the index of the target. If negative, it counts from right.
 If target_index is larger than the number of properties,
 there is no target (for unsupervised learning)
 header is a list of names for the features
 """
 if test is None:
 train,test = partition_data(train, prob_test, seed=self.seed)
 self.train = train
 self.test = test
 self.display(1,"Tuples read.
Training set", len(train),
 "examples. Number of columns:","\nExamples. Number of columns:"
)
 self.prob_test = prob_test
 self.num_properties = len(self.train[0])
 if target_index < 0: #allows for -1, -2, etc.
 target_index = self.num_properties + target_index
 self.target_index = target_index
 self.header = header
 self.create_features()
 self.display(1,"There are",len(self.input_features),"input features")

Initially we assume that all of the properties can be mapped directly into
features. If all values are 0 or 1 they can be used as Boolean features. This will be
overridden to allow for more general features.

```python
learnProblem.py — (continued)

def create_features(self):
    """create the input features and target feature.
    This assumes that the features all have range \(\{0,1\}\).
    This should be overridden if the features have a different range.
    """
    self.input_features = []
    for i in range(self.num_properties):
```
7.1. Representations of Data and Predictions

```python
def feat(e, index=i):
    return e[index]
if self.header:
    feat.__doc__ = self.header[i]
else:
    feat.__doc__ = "e["+str(i)+"]"
feat.frange = [0,1]
if i == self.target_index:
    self.target = feat
else:
    self.input_features.append(feat)
```

7.1.1 Evaluating Predictions

A **predictor** is a function that takes an example and makes a prediction on the value of the target feature. A predictor can be judged according to a number of evaluation criteria. The function `evaluate_dataset` returns the average error for each example, where the error for each example depends on the evaluation criteria. Here we consider three evaluation criteria, the sum-of-squares, the sum of absolute errors and the logloss (the negative log-likelihood, which is the number of bits to describe the data using a code based on the prediction treated as a probability).

```python
evaluation_criteria = ["sum-of-squares","sum_absolute","logloss"]
def evaluate_dataset(self, data, predictor, evaluation_criterion):
    """Evaluates predictor on data according to the evaluation_criterion.
    predictor is a function that takes an example and returns a
    prediction for the target feature.
evaluation_criterion is one of the evaluation_criteria.
    """
    assert evaluation_criterion in self.evaluation_criteria,"given: "+str(evaluation_criterion)
if data:
    try:
        error = sum(error_example(predictor(example), self.target(example),
                                   evaluation_criterion)
                                   for example in data)/len(data)
    except ValueError:
        return float("inf") # infinity
    return error
```

`error_example` is used to evaluate a single example, based on the predicted value, the actual value and the evaluation criterion. Note that for logloss, the actual value must be 0 or 1.

```python
def error_example(predicted, actual, evaluation_criterion):
    """returns the error of the for the predicted value given the actual value
```

http://aipython.org

Version 0.7.7
August 8, 2019
7. Supervised Machine Learning

throw ValueError if the error is infinite (log(0))

if evaluation_criterion=="sum-of-squares":
 return (predicted-actual)**2
elif evaluation_criterion=="sum_absolute":
 return abs(predicted-actual)
elif evaluation_criterion=="logloss":
 assert actual in [0,1], "actual="+str(actual)
 if actual==0:
 return -math.log2(1-predicted)
 else:
 return -math.log2(predicted)
elif evaluation_criterion=="characteristic_ss":
 return sum((1-predicted[i])**2 if actual==i else predicted[i]**2
 for i in range(len(predicted)))
else:
 raise RuntimeError("Not evaluation criteria: "+str(evaluation_criterion))

7.1.2 Creating Test and Training Sets

The following method partitions the data into a training set and a test set. Note
that this does not guarantee that the test set will contain exactly a proportion
of the data equal to prob_test.

[An alternative is to use random.sample() which can guarantee that the test
set will contain exactly a particular proportion of the data. However this would
require knowing how many elements are in the data set, which we may not
know, as data may just be a generator of the data (e.g., when reading the data
from a file).]

def partition_data(data, prob_test=0.30, seed=None):
 """partitions the data into a training set and a test set, where
 prob_test is the probability of each example being in the test set.
 """
 train = []
 test = []
 if seed: # given seed makes the partition consistent from run-to-run
 random.seed(seed)
 for example in data:
 if random.random() < prob_test:
 test.append(example)
 else:
 train.append(example)
 return train, test

http://aipython.org Version 0.7.7 August 8, 2019
7.1. Representations of Data and Predictions

7.1.3 Importing Data From File

A data set is typically loaded from a file. The default here is that it loaded from a CSV (comma separated values) file, although the default separator can be changed. This assumes that all lines that contain the separator are valid data (so we only include those data items that contain more than one element). This allows for blank lines and comment lines that do not contain the separator. However, it means that this method is not suitable for cases where there is only one feature.

Note that data_all and data_tuples are generators. data_all is a generator of a list of list of strings. This version assumes that CSV files are simple. The standard csv package, that allows quoted arguments, can be used by uncommenting the line for data_all and commenting out the following line. data_tuples contains only those lines that contain the delimiter (others lines are assumed to be empty or comments), and tries to convert the elements to numbers whenever possible.

This allows for some of the columns to be included. Note that if include_only is specified, the target index is in the resulting

```python
class Data_from_file(Data_set):
    def __init__(self, file_name, separator=',', num_train=None, prob_test=0.3,
                 has_header=False, target_index=0, boolean_features=True,
                 categorical=[], include_only=None):
        """create a dataset from a file
        separator is the character that separates the attributes
        num_train is a number n specifying the first n tuples are training, or None
        prob_test is the probability an example should in the test set (if num_train is None)
        has_header is True if the first line of file is a header
        target_index specifies which feature is the target
        boolean_features specifies whether we want to create Boolean features
        (if False, is uses the original features).
        categorical is a set (or list) of features that should be treated as categorical
        include_only is a list or set of indexes of columns to include
        ""
        self.boolean_features = boolean_features
        with open(file_name,'r',newline='') as csvfile:
            data_all = (line.strip().split(separator) for line in csvfile)
            if include_only is not None:
                data_all = ([v for (i,v) in enumerate(line) if i in include_only] for line in data_all)
                if has_header:
                    header = next(data_all)
            else:
                header = None
            data_tuples = (make_num(d) for d in data_all if len(d)>1)
            if num_train is not None:
                # training set is divided into training then test examples
                # the file is only read once, and the data is placed in appropriate list
```

http://aipython.org Version 0.7.7 August 8, 2019
def create_features(self, max_num_cuts=8):
 """creates boolean features from input features."

7.1.4 Creating Binary Features

Some of the algorithms require Boolean features or features with range \{0, 1\}. In order to be able to use these algorithms on datasets that allow for arbitrary ranges of input variables, we construct binary features from the attributes. This method overrides the method in Data_set.

There are 3 cases:

- When the range only has two values, we designate one to be the “true” value.

- When the values are all numeric, we assume they are ordered (as opposed to just being some classes that happen to be labelled with numbers, but where the numbers have no meaning) and construct Boolean features for splits of the data. That is, the feature is \(e[\text{ind}] < \text{cut} \) for some value \(\text{cut} \). We choose a number of \(\text{cut} \) values, up to a maximum number of cuts, given by \(\text{max_num_cuts} \).

- When the values are not all numeric, we assume they are unordered, and create an indicator function for each value. An indicator function for a value returns true when that value is given and false otherwise. Note that we can’t create an indicator function for values that appear in the test set but not in the training set because we haven’t seen the test set. For the examples in the test set with that value, the indicator functions all return false.
max_num_cuts is the maximum number of binary variables
to split a numerical feature into.

```
ranges = [set() for i in range(self.num_properties)]
for example in self.train:
    for ind, val in enumerate(example):
        ranges[ind].add(val)
if self.target_index <= self.num_properties:
    def target(e, index=self.target_index):
        return e[index]
    if self.header:
        target.__doc__ = self.header[ind]
    else:
        target.__doc__ = "e["+str(ind)+"]"

target.frange = ranges[self.target_index]
self.target = target
if self.boolean_features:
    self.input_features = []
    for ind,frange in enumerate(ranges):
        if ind != self.target_index and len(frange)>1:
            if len(frange) == 2:
                # two values, the feature is equality to one of them.
                true_val = list(frange)[1]  # choose one as true
                def feat(e, i=ind, tv=true_val):
                    return e[i]==tv
                if self.header:
                    feat.__doc__ = self.header[ind] + "==" + str(true_val)
                else:
                    feat.__doc__ = "e[" + str(ind) + "]==" + str(true_val)
                feat.frange = boolean
                self.input_features.append(feat)
            elif all(isinstance(val,(int, float)) for val in frange):
                # all numeric, create cuts of the data
                sorted_frange = sorted(frange)
                num_cuts = min(max_num_cuts, len(frange))
                cut_positions = [len(frange)*i//num_cuts for i in range(1,num_cuts)]
                for cut in cut_positions:
                    cutat = sorted_frange[cut]
                    def feat(e, ind_=ind, cutat=cutat):
                        return e[ind_] < cutat
                    if self.header:
                        feat.__doc__ = self.header[ind] + "<" + str(cutat)
                    else:
                        feat.__doc__ = "e[" + str(ind) + "]<" + str(cutat)
                    feat.frange = boolean
                    self.input_features.append(feat)
            else:
                # create an indicator function for every value
                for val in frange:
```
def feat(e, ind=ind, val=val):
 return e[ind] == val

if self.header:
 feat.__doc__ = self.header[ind] + "==" + str(val)
else:
 feat.__doc__ = "e[" + str(ind) + "] == " + str(val)
feat.frange = boolean
 self.input_features.append(feat)

else: # boolean_features is off
 self.input_features = []
 for i in range(self.num_properties):
 def feat(e, index=i):
 return e[index]
 if self.header:
 feat.__doc__ = self.header[i]
 else:
 feat.__doc__ = "e[" + str(i) + "]"
 feat.frange = ranges[i]
 if i == self.target_index:
 self.target = feat
 else:
 self.input_features.append(feat)

Exercise 7.1 Change the code so that it splits using e[ind] ≤ cut instead of e[ind] < cut. Check boundary cases, such as 3 elements with 2 cuts. As a test case, make sure that when the range is the 30 integers from 100 to 129, and you want 2 cuts, the resulting Boolean features should be e[ind] ≤ 109 and e[ind] ≤ 119 to make sure that each of the resulting ranges is equal size.

Exercise 7.2 This splits on whether the feature is less than one of the values in the training set. Sam suggested it might be better to split between the values in the training set, and suggested using

\[\text{cutat} = (\text{sorted frange}[\text{cut}] + \text{sorted frange}[\text{cut} - 1]) / 2 \]

Why might Sam have suggested this? Does this work better? (Try it on a few data sets).

When reading from a file all of the values are strings. This next method tries to convert each values into a number (an int or a float), if it is possible.

```python
def make_num(str_list):
    """make the elements of string list str_list numerical if possible."
    """
    res = []
    for e in str_list:
        try:
            res.append(int(e))
        except ValueError:
```

http://aipython.org
try:
 res.append(float(e))
except ValueError:
 res.append(e.strip())
return res

7.1.5 Augmented Features

Sometimes we want to augment the features with new features computed from the old features (e.g. the product of features). Here we allow the creation of a new dataset from an old dataset but with new features.

A feature is a function of examples. A unary feature constructor takes a feature and returns a new feature. A binary feature combiner takes two features and returns a new feature.

```python
class Data_set_augmented(Data_set):
    def __init__(self, dataset, unary_functions=[], binary_functions=[], include_orig=True):
        """creates a dataset like dataset but with new features
        unary_function is a list of unary feature constructors
        binary_functions is a list of binary feature combiners.
        include_orig specifies whether the original features should be included
        """
        self.orig_dataset = dataset
        self.unary_functions = unary_functions
        self.binary_functions = binary_functions
        self.include_orig = include_orig
        self.target = dataset.target
        Data_set.__init__(self, dataset.train, test=dataset.test,
                          target_index = dataset.target_index)

    def create_features(self):
        if self.include_orig:
            self.input_features = self.orig_dataset.input_features.copy()
        else:
            self.input_features = []
        for u in self.unary_functions:
            for f in self.orig_dataset.input_features:
                self.input_features.append(u(f))
        for b in self.binary_functions:
            for f1 in self.orig_dataset.input_features:
                for f2 in self.orig_dataset.input_features:
                    if f1 != f2:
                        self.input_features.append(b(f1,f2))

The following are useful unary feature constructors and binary feature combiner.

```
"""a unary feature constructor to construct the square of a feature
"""
def sq(e):
 return f(e)**2
sq.__doc__ = f.__doc__+'**2'
return sq
def power_feat(n):
 """given n returns a unary feature constructor to construct the nth power of a feature.
 e.g., power_feat(2) is the same as square
"""
def fn(f,n=n):
 def pow(e,n=n):
 return f(e)**n
 pow.__doc__ = f.__doc__+'**'+str(n)
 return pow
return fn
def prod_feat(f1,f2):
 """a new feature that is the product of features f1 and f2
 """
def feat(e):
 return f1(e)*f2(e)
feat.__doc__ = f1.__doc__+'*'+f2.__doc__
return feat
def eq_feat(f1,f2):
 """a new feature that is 1 if f1 and f2 give same value
 """
def feat(e):
 return 1 if f1(e)==f2(e) else 0
feat.__doc__ = f1.__doc__+'=='+f2.__doc__
return feat
def neq_feat(f1,f2):
 """a new feature that is 1 if f1 and f2 give different values
 """
def feat(e):
 return 1 if f1(e)!=f2(e) else 0
feat.__doc__ = f1.__doc__+'!='+f2.__doc__
return feat

Example:

```
# from learnProblem import Data_set_augmented,prod_feat
# data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
## data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
# dataplus = Data_set_augmented(data,[],[prod_feat])
# dataplus = Data_set_augmented(data,[],[prod_feat,eq_feat])
```

http://aipython.org
7.2. Learning With No Input Features

Exercise 7.3 For symmetric properties, such as product, we don’t need both \(f_1 \ast f_2\) as well as \(f_2 \ast f_1\) as extra properties. Allow the user to be able to declare feature constructors as symmetric (by associating a Boolean feature with them). Change `construct_features` so that it does not create both versions for symmetric combiners.

7.1.6 Learner

A learner takes a dataset (and possible other arguments specific to the method). To get it to learn, we call the `learn()` method. This implements `Displayable` so that we can display traces at multiple levels of detail (and perhaps with a GUI).

```python
from display import Displayable

class Learner(Displayable):
    def __init__(self, dataset):
        raise NotImplementedError("Learner.__init__")  # abstract method

    def learn(self):
        """returns a predictor, a function from a tuple to a value for the target feature """
        raise NotImplementedError("learn")  # abstract method
```

7.2 Learning With No Input Features

If we make the same prediction for each example, what prediction should we make?

There are a few alternatives as to what could be allowed in a prediction:

- a point prediction, where we are only allowed to predict one of the values of the feature. For example, if the values of the feature are \(\{0, 1\}\) we are only allowed to predict 0 or 1 or of the values are ratings in \(\{1, 2, 3, 4, 5\}\), we can only predict one of these integers.

- a point prediction, where we are allowed to predict any value. For example, if the values of the feature are \(\{0, 1\}\) we may be allowed to predict 0.3, 1, or even 1.7. For all of the criteria we can imagine, there is no point in predicting a value greater than 1 or less than zero (but that doesn’t mean we can’t), but it is often useful to predict a value between 0 and 1. If the values are ratings in \(\{1, 2, 3, 4, 5\}\), we may want to predict 3.4.

- a probability distribution over the values of the feature. For each value \(v\), we predict a non-negative number \(p_v\), such that the sum over all predictions is 1.
The following code assumes the second of these, where we can make a point prediction of any value (although median will only predict one of the actual values for the feature).

The point prediction function takes in a target feature (which is assumed to be numeric), some training data, and a section of what to return, and returns a function that takes in an example, and makes a prediction of a value for the target variable, but makes same prediction for all examples.

This method uses selection, whose value should be "median", "proportion", or "Laplace" determine what prediction should be made.

```
from learnProblem import Learner, Data_set
import math, random

selections = ["median", "mean", "Laplace"]

def point_prediction(target, training_data,
    selection="mean"):
    """makes a point prediction for a set of training data.
    target provides the target
    training_data provides the training data to use (often a subset of train).
    selection specifies what statistic of the data to use as the evaluation.
    to_optimize provides a criteria to optimize (used to guess selection)
    """

    assert len(training_data)>0
    if selection == "median":
        counts,total = target_counts(target,training_data)
        middle = total/2
        cumulative = 0
        for val,num in sorted(counts.items()):
            cumulative += num
            if cumulative > middle:
                break # exit loop with val as the median
    elif selection == "mean":
        val = mean((target(e) for e in training_data))
    elif selection == "Laplace":
        val = mean((target(e) for e in training_data),len(target.frange),1)
    elif selection == "mode":
        raise NotImplemented Error("mode")
    else:
        raise RuntimeError("Not valid selection: "+str(selection))
    fun = lambda x: val
    fun.__doc__ = str(val)
    return fun

def mean(enum,count=0,sum=0):
    """returns the mean of enumeration enum,
    count and sum are initial counts and the initial sum.
    This works for enumerations, even where len() is not defined"""
    for e in enum:
```
7.2. Learning With No Input Features

```python
50  count += 1
51  sum += e
52  return sum/count
53
54 def target_counts(target, data_subset):
55    """returns a value:count dictionary of the count of the number of
56    times target has this value in data_subset, and the number of examples.
57    """
58    counts = {val:0 for val in target.frange}
59    total = 0
60    for instance in data_subset:
61        total += 1
62        counts[target(instance)] += 1
63    return counts, total
```

7.2.1 Testing

To test the point prediction, we will first generate some data from a simple (Bernoulli) distribution, where there are two possible values, 0 and 1 for the target feature. Given prob, a number in the range [0,1], this generate some training and test data where prob is the probability of each example being 1.

```python
65  class Data_set_random(Data_set):
66    """A data set of a {0,1} feature generated randomly given a probability"""
67    def __init__(self, prob, train_size, test_size=100):
68        """a data set of with train_size training examples,
69        test_size test examples
70        where each examples in generated where prob i the probability of 1
71        """
72        self.max_display_level = 0
73        train = [[1] if random.random()<prob else [0] for i in range(train_size)]
74        test = [[1] if random.random()<prob else [0] for i in range(test_size)]
75        Data_set.__init__(self, train, test, target_index=0)
```

Let’s try to evaluate the predictions of the possible selections according to the different evaluation criteria, for various training sizes.

```python
77  def test_no_inputs():
78      num_samples = 1000 #number of runs to average over
79      test_size = 100  # number of test examples for each prediction
80      for train_size in [1,2,3,4,5,10,20,100,1000]:
81          total_error = {(select,crit):0 for select in selections}
82              for crit in Data_set.evaluation_criteria}
83          for sample in range(num_samples): # average over num_samples
84              p = random.random()
85              data = Data_set_random(p, train_size, test_size)
86          for select in selections:
```

http://aipython.org
Supervised Machine Learning

```python
prediction = point_prediction(data.target, data.train, selection=select)
for ecrit in Data_set.evaluation_criteria:
    test_error = data.evaluate_dataset(data.test, prediction, ecrit)
    total_error[(select, ecrit)] += test_error
print("For training size", train_size,":")
for ecrit in Data_set.evaluation_criteria:
    print(" Evaluated according to", ecrit, ":")
    for select in selections:
        print(" Average error of", select, "is",
        total_error[(select, ecrit)] / num_samples)
```

7.3 Decision Tree Learning

To run the decision tree learning demo, in folder “aipython”, load “learnDT.py”, using e.g., ipython -i learnDT.py, and it prints some test results. To try more examples, copy and paste the commented-out commands at the bottom of that file. This requires Python 3 with matplotlib.

The decision tree algorithm does binary splits, and assumes that all input features are binary functions of the examples. It stops splitting if there are no input features, the number of examples is less than a specified number of examples or all of the examples agree on the target feature.

```python
class DT_learner(Learner):
    def __init__(self, dataset,
                 to_optimize="sum-of-squares",
                 leaf_selection="mean", # what to use for point prediction at leaves
                 train=None, # used for cross validation
                 min_number_examples=10):
        self.dataset = dataset
        self.target = dataset.target
        self.to_optimize = to_optimize
        self.leaf_selection = leaf_selection
        self.min_number_examples = min_number_examples
        if train is None:
            self.train = self.dataset.train
        else:
            self.train = train
```
7.3. Decision Tree Learning

```python
def learn(self):
    return self.learn_tree(self.dataset.input_features, self.train)
```

The main recursive algorithm, takes in a set of input features and a set of training data. It first decides whether to split. If it doesn’t split, it makes a point prediction, ignoring the input features.

It doesn’t split if there are no more input features, if there are fewer examples than `min_number_examples`, if all the examples agree on the value of the target or if the best split makes all examples in the same partition.

If it decides to split, it selects the best split and returns the condition to split on (in the variable `split`) and the corresponding partition of the examples.

```python
def learn_tree(self, input_features, data_subset):
    """returns a decision tree
    for input_features is a set of possible conditions
    data_subset is a subset of the data used to build this (sub)tree
    where a decision tree is a function that takes an example and
    makes a prediction on the target feature
    ""
    if (input_features and len(data_subset) >= self.min_number_examples):
        first_target_val = self.target(data_subset[0])
        allagree = all(self.target(inst)==first_target_val for inst in data_subset)
        if not allagree:
            split, partn = self.select_split(input_features, data_subset)
            if split: # the split succeeded in splitting the data
                false_examples, true_examples = partn
                rem_features = [fe for fe in input_features if fe != split]
                self.display(2,"Splitting on",split.__doc__,"with examples split",
                len(true_examples),":",len(false_examples))
                true_tree = self.learn_tree(rem_features,true_examples)
                false_tree = self.learn_tree(rem_features,false_examples)
                fun = lambda e: true_tree(e) if split(e) else false_tree(e)
                def fun(e):
                    if split(e):
                        return true_tree(e)
                    else:
                        return false_tree(e)
            # don't expand the trees but return a point prediction
            return point_prediction(self.target, data_subset, selection=self.leaf_selection)
    return fun.__doc__ = ("if "+split.__doc__+" then ("+true_tree.__doc__+
    ") else ("+false_tree.__doc__+")")
    return fun
```

```python
def select_split(self, input_features, data_subset):
    """finds best feature to split on.
```

http://aipython.org Version 0.7.7 August 8, 2019
input_features is a non-empty list of features.
returns feature, partition
where feature is an input feature with the smallest error as
judged by to_optimize or
feature=None if there are no splits that improve the error
partition is a pair (false_examples, true_examples) if feature is not None

best_feat = None # best feature
best_error = float("inf") # infinity - more than any error
best_error = training_error(self.dataset, data_subset, self.to_optimize)
best_partition = None
for feat in input_features:
 false_examples, true_examples = partition(data_subset, feat)
 if false_examples and true_examples: #both partitions are non-empty
 err = (training_error(self.dataset, false_examples, self.to_optimize) + training_error(self.dataset, true_examples, self.to_optimize))
 self.display(3, "split on", feat.__doc__, "has err=", err,
 "splits into", len(true_examples), ":", len(false_examples))
 if err < best_error:
 best_feat = feat
 best_error=err
 best_partition = false_examples, true_examples
 self.display(3,"best split is on",best_feat.__doc__,
 "with err=",best_error)
 return best_feat, best_partition

def partition(data_subset, feature):
 """partitions the data_subset by the feature"""
 true_examples = []
 false_examples = []
 for example in data_subset:
 if feature(example):
 true_examples.append(example)
 else:
 false_examples.append(example)
 return false_examples, true_examples

def training_error(dataset, data_subset, to_optimize):
 """returns training error for dataset on to_optimize.
This assumes that we choose the best value for the optimization
criteria for dataset according to point_prediction
"""
 select_dict = {"sum-of-squares":"mean", "sum_absolute":"median",
 "logloss":"Laplace"} # arbitrary mapping. Perhaps wrong.
 selection = select_dict[to_optimize]
 predictor = point_prediction(dataset.target, data_subset, selection=selection)
 error = sum(error_example(predictor(example),
 dataset.target(example),
 to_optimize)
for example in data_subset)
 return error

Test cases:

from learnProblem import Data_set, Data_from_file

def test(data):
 """Prints errors and the trees for various evaluation criteria and ways to select leaves."
 """
 for crit in Data_set.evaluation_criteria:
 for leaf in selections:
 tree = DT_learner(data, to_optimize=crit, leaf_selection=leaf).learn()
 print("For",crit,"using",leaf,"at leaves, tree built is:",tree.__doc__)
 if data.test:
 for ecrit in Data_set.evaluation_criteria:
 test_error = data.evaluate_dataset(data.test, tree, ecrit)
 print(" Average error for", ecrit,"using",leaf, "at leaves is", test_error)

if __name__ == '__main__':
 #print("carbool.csv"); test(data = Data_from_file('data/carbool.csv', target_index=-1))
 # print("SPECT.csv"); test(data = Data_from_file('data/SPECT.csv', target_index=0))
 print("mail_reading.csv"); test(data = Data_from_file('data/mail_reading.csv', target_index=-1))
 # print("holiday.csv"); test(data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1))

Exercise 7.4 The current algorithm does not have a very sophisticated stopping criterion. What is the current stopping criterion? (Hint: you need to look at both learn_tree and select_split.)

Exercise 7.5 Extend the current algorithm to include in the stopping criterion

(a) A minimum child size; don't use a split if one of the children has fewer elements that this.

(b) A depth-bound on the depth of the tree.

(c) An improvement bound such that a split is only carried out if error with the split is better than the error without the split by at least the improvement bound.

Which values for these parameters make the prediction errors on the test set the smallest? Try it on more than one dataset.

Exercise 7.6 Without any input features, it is often better to include a pseudo-count that is added to the counts from the training data. Modify the code so that it includes a pseudo-count for the predictions. When evaluating a split, including pseudo counts can make the split worse than no split. Does pruning with an improvement bound and pseudo-counts make the algorithm work better than with an improvement bound by itself?

Exercise 7.7 Some people have suggested using information gain (which is equivalent to greedy optimization of logloss) as the measure of improvement when building the tree, even in they want to have non-probabilistic predictions in the
final tree. Does this work better than myopically choosing the split that is best for the evaluation criteria we will use to judge the final prediction?

7.4 Cross Validation and Parameter Tuning

To run the cross validation demo, in folder "aipython", load "learnCrossValidation.py", using e.g., `ipython -i learnCrossValidation.py`. Run `plot_fig_7.15()` to produce a graph like Figure 7.15. Note that different runs will produce different graphs, so your graph will not look like the one in the textbook. To try more examples, copy and paste the commented-out commands at the bottom of that file. This requires Python 3 with matplotlib.

The above decision tree overfits the data. One way to determine whether the prediction is overfitting is by cross validation. The code below implements k-fold cross validation, which can be used to choose the value of parameters to best fit the training data. If we want to use parameter tuning to improve predictions on a particular data set, we can only use the training data (and not the test data) to tune the parameter.

In k-fold cross validation, we partition the training set into k approximately equal-sized folds (each fold is an enumeration of examples). For each fold, we train on the other examples, and determine the error of the prediction on that fold. For example, if there are 10 folds, we train on 90% of the data, and then test on remaining 10% of the data. We do this 10 times, so that each example gets used as a test set once, and in the training set 9 times.

The code below creates one copy of the data, and multiple views of the data. For each fold, `fold` enumerates the examples in the fold, and `fold_complement` enumerates the examples not in the fold.
for i in range(self.fold_boundaries[fold_num],
 self.fold_boundaries[fold_num+1]):
 yield self.data[i]

def fold_complement(self, fold_num):
 for i in range(0,self.fold_boundaries[fold_num]):
 yield self.data[i]
 for i in range(self.fold_boundaries[fold_num+1],len(self.data)):
 yield self.data[i]

The validation error is the average error for each example, where we test on
each fold, and learn on the other folds.

def validation_error(self, learner, criterion, **other_params):
 error = 0
 try:
 for i in range(self.num_folds):
 predictor = learner(self, train=list(self.fold_complement(i)),
 **other_params).learn()
 error += sum(error_example(predictor(example),
 self.target(example),
 criterion)
 for example in self.fold(i))
 except ValueError:
 return float("inf") #infinity
 return error/len(self.data)

The plot_error method plots the average error as a function of a the minimum
number of examples in decision-tree search, both for the validation set and for
the test set. The error on the validation set can be used to tune the parameter —
choose the value of the parameter that minimizes the error. The error on the
test set cannot be used to tune the parameters; if is were to be used this way
then it cannot be used to test.
7. Supervised Machine Learning

```python
    tree = DT_learner(data, criterion, min_number_examples=mne).learn()
    terrors.append(data.evaluate_dataset(data.test, tree, criterion))
    plt.plot(range(1, len(data.train)+2), verrors, ls='-', color='k', label="validation for "+criterion)
    plt.plot(range(1, len(data.train)+2), terrors, ls='--', color='k', label="test set for "+criterion)
    plt.legend()
    plt.draw()

    # Try
    # data = Data_from_file('data/mail_reading.csv', target_index=-1)
    # data = Data_from_file('data/SPECT.csv', target_index=0)
    # data = Data_from_file('data/carbool.csv', target_index=-1)
    # plot_error(data) # warning, may take a long time depending on the dataset

    def plot_fig_7_15(): # different runs produce different plots
        data = Data_from_file('data/SPECT.csv', target_index=0)
        # data = Data_from_file('data/carbool.csv', target_index=-1)
        plot_error(data)
    # plot_fig_7_15() # warning takes a long time!
```

7.5 Linear Regression and Classification

Here we give a gradient descent searcher for linear regression and classification.

```python
from learnProblem import Learner
import random, math

class Linear_learner(Learner):
    def __init__(self, dataset, train=None, learning_rate=0.1, max_init=0.2, squashed=True):
        """Creates a gradient descent searcher for a linear classifier.
        The main learning is carried out by learn()
        
        dataset provides the target and the input features
        train provides a subset of the training data to use
        number_iterations is the default number of steps of gradient descent
        learning_rate is the gradient descent step size
        max_init is the maximum absolute value of the initial weights
        squashed specifies whether the output is a squashed linear function
        """
        self.dataset = dataset
        self.target = dataset.target
        if train==None:
            self.train = self.dataset.train
        else:
            self.train = train
        self.learning_rate = learning_rate
```

http://aipython.org

Version 0.7.7
August 8, 2019
self.squashed = squashed
self.input_features = dataset.input_features+[one] # one is defined below
self.weights = {feat:random.uniform(-max_init,max_init)
for feat in self.input_features}

predictor predicts the value of an example from the current parameter settings.
predictor_string gives a string representation of the predictor.

def predictor(self,e):
 """returns the prediction of the learner on example e""
 linpred = sum(w*f(e) for f,w in self.weights.items())
 if self.squashed:
 return sigmoid(linpred)
 else:
 return linpred

def predictor_string(self, sig_dig=3):
 """returns the doc string for the current prediction function
 sig_dig is the number of significant digits in the numbers"
 doc = "".join(str(round(val,sig_dig))+"*"+feat.__doc__
for feat,val in self.weights.items())
 if self.squashed:
 return "sigmoid("+doc")"
 else:
 return doc

learn is the main algorithm of the learner. It does num_iter steps of gradient
descent. The other parameters it gets from the class.

def learn(self,num_iter=100):
 for it in range(num_iter):
 self.display(2,"prediction=",self.predictor_string())
 for e in self.train:
 predicted = self.predictor(e)
 error = self.target(e) - predicted
 update = self.learning_rate*error
 for feat in self.weights:
 self.weights[feat] += update*feat(e)
#self.predictor.__doc__ = self.predictor_string()
#return self.predictor

one is a function that always returns 1. This is used for one of the input prop-
erties.
Supervised Machine Learning

sigmoid(x) is the function

\[
\frac{1}{1 + e^{-x}}
\]

The following tests the learner on a data sets. Uncomment the other data sets for different examples.

```python
from learnProblem import Data_set, Data_from_file
import matplotlib.pyplot as plt
def test(**args):
    data = Data_from_file('data/SPECT.csv', target_index=0)
    learner = Linear_learner(data, **args)
    learner.learn()
    for ecrit in Data_set.evaluation_criteria:
        test_error = data.evaluate_dataset(data.test, learner.predictor, ecrit)
        print('Average', ecrit, 'error is', test_error)
```

The following plots the errors on the training and test sets as a function of the number of steps of gradient descent.

```python
def plot_steps(learner=None,
               data=None,
               criterion="sum-of-squares",
               step=1,
               num_steps=1000,
               log_scale=True,
               label=""):"
```

http://aipython.org
else:
 plt.xscale('linear')
if data is None:
 data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
 data = Data_from_file('data/SPECT.csv', target_index=0)
 data = Data_from_file('data/mail_reading.csv', target_index=-1)
 data = Data_from_file('data/carbool.csv', target_index=-1)
random.seed(None) # reset seed
if learner is None:
 learner = Linear_learner(data)
train_errors = []
test_errors = []
for i in range(1, num_steps+1, step):
 test_errors.append(data.evaluate_dataset(data.test, learner.predictor, criterion))
 train_errors.append(data.evaluate_dataset(data.train, learner.predictor, criterion))
 learner.display(2, "Train error:", train_errors[-1],
 "Test error:", test_errors[-1])
 learner.learn(num_iter=step)
 plt.plot(range(1, num_steps+1, step), train_errors, ls='-', c='k', label="training errors")
 plt.plot(range(1, num_steps+1, step), test_errors, ls='--', c='k', label="test errors")
plt.legend()
plt.draw()
learner.display(1, "Train error:", train_errors[-1],
 "Test error:", test_errors[-1])

if __name__ == "__main__":
test()

This generates the figure
from learnProblem import Data_set_augmented, prod_feat
data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
dataplus = Data_set_augmented(data,[],[prod_feat])
plot_steps(data=data,num_steps=10000)
plot_steps(data=dataplus,num_steps=10000) # warning very slow

Exercise 7.8 The squashed learner only makes predictions in the range (0,1). If the output values are \{1,2,3,4\} there is no use prediction less than 1 or greater than 4. Change the squashed learner so that it can learn values in the range (1,4).

Test it on the file `data/car.csv`.

The following plots the prediction as a function of the number of steps of gradient descent. We first define a version of `range` that allows for real numbers (integers and floats).

```python
def arange(start, stop, step):
    """returns enumeration of values in the range [start,stop) separated by step.
    like the built-in range(start,stop,step) but allows for integers and floats.
    Note that rounding errors are expected with real numbers.
    """
    while start<stop:
        yield start
        start += step
```

http://aipython.org

yield start
start += step

def plot_prediction(learner=None, data = None, minx = 0, maxx = 5, step_size = 0.01, # for plotting label="function"):
 plt.ion()
 plt.xlabel("x")
 plt.ylabel("y")
 if data is None:
 data = Data_from_file('data/simp_regr.csv', prob_test=0, boolean_features=False, target_index=-1)
 if learner is None:
 learner = Linear_learner(data,squashed=False)
 learner.learning_rate=0.001
 learner.learn(100)
 learner.learning_rate=0.0001
 learner.learn(1000)
 learner.learning_rate=0.00001
 learner.learn(10000)
 learner.display(1,"function learned is", learner.predictor_string(), "error=",data.evaluate_dataset(data.train, learner.predictor, "sum-of-squares")
 plt.plot([e[0] for e in data.train],[e[-1] for e in data.train],"bo",label="data")
 plt.plot(list(arange(minx,maxx,step_size)),[learner.predictor([x]) for x in arange(minx,maxx,step_size)], label=label)
 plt.legend()
 plt.draw()

from learnProblem import Data_set_augmented, power_feat
def plot_polynomials(data=None, learner_class = Linear_learner, max_degree=5, minx = 0, maxx = 5, num_iter = 100000, learning_rate = 0.0001, step_size = 0.01, # for plotting):
 plt.ion()
 plt.xlabel("x")
 plt.ylabel("y")
 if data is None:
 data = Data_from_file('data/simp_regr.csv', prob_test=0, boolean_features=False, target_index=-1)
 plt.plot([e[0] for e in data.train],[e[-1] for e in data.train],"ko",label="data")
7.5. Linear Regression and Classification

```python
x_values = list(arange(minx, maxx, step_size))
line_styles = ['-', '--', '-.', ':']
colors = ['0.5', 'k', 'k', 'k', 'k']

for degree in range(max_degree):
    data_aug = Data_set_augmented(data,[power_feat(n) for n in range(1,degree+1)],
                                 include_orig=False)
    learner = learner_class(data_aug,squashed=False)
    learner.learning_rate=learning_rate
    learner.learn(num_iter)
    learner.display(1,"For degree",degree,
                    "function learned is", learner.predictor_string(),
                    "error=",data.evaluate_dataset(data.train, learner.predictor, "sum-of-squares")
    ls = line_styles[degree % len(line_styles)]
    col = colors[degree % len(colors)]
    plt.plot(x_values,[learner.predictor([x]) for x in x_values], linestyle=ls, color=col,
              label="degree=\"+str(degree)\")
plt.legend(loc='upper left')
plt.draw()

# Try:
# plot_prediction()
# plot_polynomials()
# data = Data_from_file('data/mail_reading.csv', target_index=-1)
# plot_prediction(data=data)
```

7.5.1 Batched Stochastic Gradient Descent

This implements batched stochastic gradient descent. If the batch size is 1, it can be simplified by not storing the differences in d, but applying them directly; this would be equivalent to the original code!

This overrides the learner `LinearLearner`. Note that the comparison with regular gradient descent is unfair as the number of updates per step is not the same. (How could it be made more fair?)

```
from learnLinear import Linear_learner
import random, math

class Linear_learner_bsgd(Linear_learner):
    def __init__(self, *args, batch_size=10, **kargs):
        Linear_learner.__init__(self, *args, **kargs)
        self.batch_size = batch_size

    def learn(self,num_iter=None):
        if num_iter is None:
            num_iter = self.number_iterations
        batch_size = min(self.batch_size, len(self.train))
        d = {feat:0 for feat in self.weights}
        for it in range(num_iter):
```

http://aipython.org

7. Supervised Machine Learning

```python
self.display(2,"prediction=",self.predictor_string())
for e in random.sample(self.train, batch_size):
    predicted = self.predictor(e)
    error = self.target(e) - predicted
    update = self.learning_rate*error
    for feat in self.weights:
        d[feat] += update*feat(e)
    for feat in self.weights:
        self.weights[feat] += d[feat]
        d[feat]=0
```

from learnLinear import plot_steps
from learnProblem import Data_from_file
data = Data_from_file('data/holiday.csv', target_index=-1)
learner = Linear_learner_bsgd(data)
plot_steps(learner = learner, data=data)
to plot polynomials with batching (compare to SGD)
from learnLinear import plot_polynomials
plot_polynomials(learner_class = Linear_learner_bsgd)

7.6 Deep Neural Network Learning

This provides a modular implementation that implements the layers modularly. Layers can easily be configured in many configurations. A layer needs to implement a function to compute the output values from the inputs and a way to back-propagate the error.

```
from learnProblem import Learner, Data_set, Data_from_file
from learnLinear import sigmoid, one
import random, math

class Layer(object):
    def __init__(self,nn,num_outputs=None):
        """Given a list of inputs, outputs will produce a list of length num_outputs. nn is the neural network this is part of num outputs is the number of outputs for this layer. """
        self.nn = nn
        self.num_inputs = nn.num_outputs # output of nn is the input to this layer
        if num_outputs:
            self.num_outputs = num_outputs
        else:
            self.num_outputs = nn.num_outputs # same as the inputs

    def output_values(self,input_values):
        """Return the outputs for this layer for the given input values. input_values is a list of the inputs to this layer (of length num_inputs)"
```

http://aipython.org Version 0.7.7 August 8, 2019
returns a list of length self.num_outputs

""
raise NotImplementedError("output_values") # abstract method

def backprop(self, errors):
 """Backpropagate the errors on the outputs, return the errors on the inputs. errors is a list of errors for the outputs (of length self.num_outputs). Return the errors for the inputs to this layer (of length self.num_inputs). You can assume that this is only called after corresponding output_values, and it can remember information information required for the backpropagation.
 ""
raise NotImplementedError("backprop") # abstract method

A linear layer maintains an array of weights. self.weights[o][i] is the weight between input i and output o. A 1 is added to the inputs.

class Linear_complete_layer(Layer):
 """a completely connected layer""
 def __init__(self, nn, num_outputs, max_init=0.2):
 """A completely connected linear layer. nn is a neural network that the inputs come from num_outputs is the number of outputs max_init is the maximum value for random initialization of parameters""
 Layer.__init__(self, nn, num_outputs)
 # self.weights[o][i] is the weight between input i and output o
 self.weights = [[random.uniform(-max_init, max_init)
 for inf in range(self.num_inputs+1)]
 for outf in range(self.num_outputs)]

def output_values(self, input_values):
 """Returns the outputs for the input values.
 It remembers the values for the backprop.
 Note in self.weights there is a weight list for every output, so wts in self.weights effectively loops over the outputs.""
 self.inputs = input_values + [1]
 return [sum(w*val for (w,val) in zip(wts,self.inputs))
 for wts in self.weights]

def backprop(self, errors):
 """Backpropagate the errors, updating the weights and returning the error in its inputs."
 input_errors = [0]*(self.num_inputs+1)
 for out in range(self.num_outputs):
 for inp in range(self.num_inputs+1):
 input_errors[inp] += self.weights[out][inp] * errors[out]
 self.weights[out][inp] += self.nn.learning_rate * self.inputs[inp] * errors[out]
 return input_errors[:-1] # remove the error for the "1"
class Sigmoid_layer(Layer):

 the number of outputs is equal to the number of inputs.
 Each output is the sigmoid of its corresponding input.

 def __init__(self, nn):
 Layer.__init__(self, nn)

 def output_values(self, input_values):
 """Returns the outputs for the input values.
 It remembers the output values for the backprop.
 """
 self.outputs = [sigmoid(inp) for inp in input_values]
 return self.outputs

 def backprop(self, errors):
 """Returns the derivative of the errors"
 return [e*out*(1-out) for e, out in zip(errors, self.outputs)]

class ReLU_layer(Layer):
 """Rectified linear unit (ReLU) f(z) = max(0, z).
 The number of outputs is equal to the number of inputs.
 """
 def __init__(self, nn):
 Layer.__init__(self, nn)

 def output_values(self, input_values):
 """Returns the outputs for the input values.
 It remembers the input values for the backprop.
 """
 self.input_values = input_values
 self.outputs = [max(0,inp) for inp in input_values]
 return self.outputs

 def backprop(self, errors):
 """Returns the derivative of the errors"
 return [e if inp>0 else 0 for e, inp in zip(errors, self.input_values)]

class NN(Learner):
 def __init__(self, dataset, learning_rate=0.1):
 self.dataset = dataset
 self.learning_rate = learning_rate
 self.input_features = dataset.input_features
 self.num_outputs = len(self.input_features)
 self.layers = []

 def add_layer(self, layer):
"""add a layer to the network.
Each layer gets values from the previous layer.
"""
self.layers.append(layer)
self.num_outputs = layer.num_outputs

def predictor(self,ex):
 """Predicts the value of the first output feature for example ex.
"""
 values = [f(ex) for f in self.input_features]
 for layer in self.layers:
 values = layer.output_values(values)
 return values[0]

def predictor_string(self):
 return "not implemented"

The test method learns a network and evaluates it according to various criteria.

```
def learn(self,num_iter):
    """Learn parameters for a neural network using stochastic gradient decent.
    num_iter is the number of iterations
    """
    for i in range(num_iter):
        for e in random.sample(self.dataset.train,len(self.dataset.train)):
            # compute all outputs
            values = [f(e) for f in self.input_features]
            for layer in self.layers:
                values = layer.output_values(values)
            # backpropagate
            errors = self.sum_squares_error([self.dataset.target(e)],values)
            for layer in reversed(self.layers):
                errors = layer.backprop(errors)
    
    def sum_squares_error(self,observed,predicted):
        """Returns the errors for each of the target features.
        """
        return [obsd-pred for obsd,pred in zip(observed,predicted)]
```

This constructs a neural network consisting of neural network with one hidden layer. The hidden using used a ReLU activation function. The output layer used a sigmoid.

```
data = Data_from_file('data/mail_reading.csv', target_index=-1)
data = Data_from_file('data/mail_reading_consis.csv', target_index=-1)
data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
data = Data_from_file('data/holiday.csv', target_index=-1) #, num_train=19)
nn1 = NN(data)
```
nn1.add_layer(Linear_complete_layer(nn1, 3))
nn1.add_layer(Sigmoid_layer(nn1)) # comment this or the next
nn1.add_layer(ReLU_layer(nn1))
nn1.add_layer(Linear_complete_layer(nn1, 1))
nn1.add_layer(Sigmoid_layer(nn1))
nn1.learning_rate=0.1
#nn1.learn(100)

from learnLinear import plot_steps
import time
start_time = time.perf_counter()
plot_steps(learner = nn1, data = data, num_steps=10000)
for eg in data.train:
 print(eg, nn1.predictor(eg))
end_time = time.perf_counter()
print("Time: ", end_time - start_time)

Exercise 7.9 In the definition of nn1 above, for each of the following, first hypothesize what will happen, then test your hypothesis, then explain whether you testing confirms your hypothesis or not. Test it for more than one data set, and use more than one run for each data set.

(a) Which fits the data better, having a sigmoid layer or a ReLU layer after the first linear layer?

(b) Which is faster, having a sigmoid layer or a ReLU layer after the first linear layer?

(c) What happens if you have both the sigmoid layer and then a ReLU layer after the first linear layer and before the second linear layer?

(d) What happens if you have neither the sigmoid layer nor a ReLU layer after the first linear layer?

(e) What happens if you have a ReLU layer then a sigmoid layer after the first linear layer and before the second linear layer?

Exercise 7.10 Do some

It is even possible to define a perceptron layer. Warning: you may need to change the learning rate to make this work. Should I add it into the code? It doesn’t follow the official line.

class PerceptronLayer(Layer):
 def __init__(self, nn):
 Layer.__init__(self, nn)

 def output_values(self, input_values):
 """Returns the outputs for the input values."
 """
 self.outputs = [1 if inp>0 else -1 for inp in input_values]
 return self.outputs
7.7 Boosting

The following code implements functional gradient boosting for regression.

A Boosted dataset is created from a base dataset by subtracting the prediction of the offset function from each example. This does not save the new dataset, but generates it as needed. The amount of space used is constant, independent on the size of the data set.

```
from learnProblem import Data_set, Learner

class Boosted_dataset(Data_set):
    def __init__(self, base_dataset, offset_fun):
        """new dataset which is like base_dataset, but offset_fun(e) is subtracted from the target of each example e""
        self.base_dataset = base_dataset
        self.offset_fun = offset_fun
        Data_set.__init__(self, base_dataset.train, base_dataset.test,
                         base_dataset.prob_test, base_dataset.target_index)

        def create_features(self):
            self.input_features = self.base_dataset.input_features
            def newout(e):
                return self.base_dataset.target(e) - self.offset_fun(e)
            newout.frange = self.base_dataset.target.frange
            self.target = newout
```

A boosting learner takes in a dataset and a base learner, and returns a new predictor. The base learner, takes a dataset, and returns a Learner object.

```
class Boosting_learner(Learner):
    def __init__(self, dataset, base_learner_class):
        self.dataset = dataset
        self.base_learner_class = base_learner_class
        mean = sum(self.dataset.target(e) for e in self.dataset.train)/len(self.dataset.train)
        self.predictor = lambda e:mean # function that returns mean for each example
        self.predictor.__doc__ = "lambda e:"+str(mean)
        self.offsets = [self.predictor]
        self.errors = [data.evaluate_dataset(data.test, self.predictor, "sum-of-squares")]
        self.display(1,"Predict mean test set error", self.errors[0])
```

http://aipython.org
def learn(self, num_ensemble=10):
 """adds num_ensemble learners to the ensemble.
 returns a new predictor.
 """
 for i in range(num_ensemble):
 train_subset = Boosted_dataset(self.dataset, self.predictor)
 learner = self.base_learner_class(train_subset)
 new_offset = learner.learn()
 self.offsets.append(new_offset)
 def new_pred(e, old_pred=self.predictor, off=new_offset):
 return old_pred(e)+off(e)
 self.predictor = new_pred
 self.errors.append(data.evaluate_dataset(data.test, self.predictor,"sum-of-squares"))
 self.display(1,"After Iteration",len(self.offsets)-1,"test set error=" , self.errors[-1])
 return self.predictor

For testing, sp_DT_learner returns a function that constructs a decision tree learner where the minimum number of examples is a proportion of the number of training examples. The value of 0.9 tends to have one split, and a value of 0.5 tends to have two splits (but test it). Thus this can be used to construct small decision trees that can be used as weak learners.

Testing
from learnDT import DT_learner
from learnProblem import Data_set, Data_from_file

def sp_DT_learner(min_prop=0.9):
 def make_learner(dataset):
 mne = len(dataset.train)*min_prop
 return DT_learner(dataset,min_number_examples=mne)
 return make_learner

data = Data_from_file('data/carbool.csv', target_index=-1)
#data = Data_from_file('data/SPECT.csv', target_index=0)
#data = Data_from_file('data/mail_reading.csv', target_index=-1)
#data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
learner9 = Boosting_learner(data, sp_DT_learner(0.9))
#learner7 = Boosting_learner(data, sp_DT_learner(0.7))
#learner5 = Boosting_learner(data, sp_DT_learner(0.5))
predictor9 = learner9.learn(10)
for i in learner9.offsets: print(i.__doc__)

import matplotlib.pyplot as plt

def plot_boosting(data,steps=10, thresholds=[0.5,0.1,0.01,0.001], markers=['-','-','-','.']):
 learners = [Boosting_learner(data, sp_DT_learner(th)) for th in thresholds]
 predictors = [learner.learn(steps) for learner in learners]
 plt.ion()
 plt.xscale('linear') # change between log and linear scale
 plt.xlabel("number of trees")

http://aipython.org
plt.ylabel(" error")
for (learner,(threshold,marker)) in zip(learners,zip(thresholds,markers)):
 plt.plot(range(len(learner.errors)), learner.errors, ls=marker,c='k',
 label=str(round(threshold*100))+'% min example threshold')
plt.legend()
plt.draw()
8.1 Representing Probabilistic Models

In the implementation of probabilistic models we will assume that the variables are objects, rather than the strings we used for CSPs. (Note that in the CSP code variables could be anything; we just used strings for the examples.) We use a class here because it is more amenable to extend to richer models, such as when we introduce time.

A variable consists of a name and a domain. The domain of a variable is a list or a tuple, as the ordering will matter in the representation of factors. The code below internally uses the index of each value. We define a function `val_to_index` that maps from the value to the index.

```python
class Variable(object):
    """A random variable.
    name (string) - name of the variable
    domain (list) - a list of the values for the variable.
    Variables are ordered according to their name.
    ""
    def __init__(self, name, domain):
        self.name = name
        self.size = len(domain)
        self.domain = domain
        self.val_to_index = {}  # map from domain to index
        for i, val in enumerate(domain):
            self.val_to_index[val] = i
    def __str__(self):
        return self.name
```


\begin{table}
\begin{tabular}{ccc|c}
A & B & C & Value \\
0 & a & s & v_0 \\
0 & a & t & v_1 \\
0 & b & s & v_2 \\
0 & b & t & v_3 \\
0 & c & s & v_4 \\
0 & c & t & v_5 \\
1 & a & s & v_6 \\
1 & a & t & v_7 \\
1 & b & s & v_8 \\
1 & b & t & v_9 \\
1 & c & s & v_{10} \\
1 & c & t & v_{11} \\
\end{tabular}
\caption{A representation for a factor for the variable ordering A, B, C}
\end{table}

8.2 Factors

Factors are functions from variables into values. The main problem with variable elimination is the amount of space used, because it saves the intermediate factors. (If instead it recomputed factors rather than saving the factors, it would be effectively enumerating the worlds, and so would be exponential in the number of variables). We only want to store the list of numbers, with as little bookkeeping as possible.

A total ordering of the variables, and a total ordering of the values in the domains of the variables induces a total ordering of the values of the factor according to the lexicographic ordering. E.g., suppose the domain of A is [0, 1], domain of B is ['a', 'b', 'c'], and the domain of C is ['s', 't'], the ordering [A, B, C] of variables induces an ordering on the values of the factor, as in Figure 8.1.

We just need to store the list of variables and the v's. For any assignment to A, B and C, we can compute the index of the value for that assignment. A = a, B = b, C = c is stored at location $a \times 6 + b \times 2 + c'$, where a' is A.val_to_index[a], and similarly for b' and c'.

```python
def __repr__(self):
    return "Variable('"+self.name+"')"
```

```python
from functools import reduce
# from probVariables import Variable

class Factor(object):
    nextid=0 # each factor has a unique identifier; for printing
```
8.2. Factors

```python
def __init__(self, variables):
    """variables is the ordered list of variables"
    self.variables = variables # ordered list of variables
    # Compute the size and the offsets for the variables
    self.var_offsets = {}
    self.size = 1
    for i in range(len(variables)-1,-1,-1):
        self.var_offsets[variables[i]]=self.size
        self.size *= variables[i].size
    self.id = Factor.nextid
    self.name = "f"+str(self.id)
    Factor.nextid += 1
```

For each factor, `get_value` returns the value of the factor for an assignment. An assignment is a variable:value dictionary. The assignment must include all of the variables involved in the factor, and can include variables not in the factor. This needs to be defined for every subclass.

```python
def get_value(self, assignment):
    raise NotImplementedError("get_value") # abstract method
```

The methods `str` and `brief` return string representations of the factor, as a table or just as a name with the variables it is a factor on.

```python
def __str__(self, variables=None):
    """returns a string representation of the factor.
    Allows for an arbitrary variable ordering.
    variables is a list of the variables in the factor
    (can contain other variables)"
    if variables==None:
        variables = self.variables
    else:
        variables = [v for v in variables if v in self.variables]
    res = ""
    for v in variables:
        res += str(v) + "\t"
    res += self.name+"\n"
    for i in range(self.size):
        asst = self.index_to_assignment(i)
        for v in variables:
            res += str(asst[v])+"\t"
        res += str(self.get_value(asst))
        res += "\n"
    return res
```

```python
def brief(self):
    """returns a string representing a summary of the factor"
```

http://aipython.org Version 0.7.7 August 8, 2019
res = self.name + "("
for i in range(0, len(self.variables)-1):
 res += str(self.variables[i]) + ","
if len(self.variables) > 0:
 res += str(self.variables[len(self.variables)-1])
res += ")"
return res

The methods assignment_to_index and index_to_assignment map between the assignments of values to variables and the index of where that assignment would be stored.

```python
def assignment_to_index(self, assignment):
    """returns the index where the variable:value assignment is stored""
    index = 0
    for var in self.variables:
        index += var.val_to_index[assignment[var]] * self.var_offsets[var]
    return index

def index_to_assignment(self, index):
    """gives a dict representation of the variable assignment for index""
    asst = {}
    for i in range(len(self.variables)-1, -1, -1):
        asst[self.variables[i]] = self.variables[i].domain[index % self.variables[i].size]
        index = index // self.variables[i].size
    return asst
```

A Factor_stored is a factor that has the values stored in a list.

```python
class Factor_stored(Factor):
    def __init__(self, variables, values):
        Factor.__init__(self, variables)
        self.values = values

    def get_value(self, assignment):
        return self.values[self.assignment_to_index(assignment)]
```

A Factor_observed is a factor that is the result of some observations on another factor. We don’t store the values in a list; we just look them up as needed. The observations can include variables that are not in the list, but should have some intersection with the variables in the factor.

```python
class Factor_observed(Factor):
    def __init__(self, factor, obs):
        Factor.__init__(self, [v for v in factor.variables if v not in obs])
        self.observed = obs
        self.orig_factor = factor
```

http://aipython.org Version 0.7.7 August 8, 2019
8.2. Factors

73

def get_value(self, assignment):
 ass = assignment.copy()
 for ob in self.observed:
 ass[ob] = self.observed[ob]
 return self.orig_factor.get_value(ass)

A Factor_sum is a factor that is the result of summing out a variable from the product of other factors. I.e., it constructs a representation of:

\[\sum_{\text{var} \in \text{factors}} \prod_f \]

We store the values in a list in a lazy manner; if they are already computed, we used the stored values. If they are not already computed we can compute and store them.

The method factor_times multiples a set of factors that are all factors on the same variable (or on no variables). This is the last step in variable elimination before normalizing. It returns an array giving the product for each value of variable.
def factor_times(variable, factors):
 """when factors are factors just on variable (or on no variables)""
 prods = []
 facs = [f for f in factors if variable in f.variables]
 for val in variable.domain:
 prod = 1
 ast = {variable: val}
 for f in facs:
 prod *= f.get_value(ast)
 prods.append(prod)
 return prods

Prob is a factor that represents a conditional probability.

class Prob(Factor_stored):
 """A factor defined by a conditional probability table""
 def __init__(self, var, pars, cpt):
 """Creates a factor from a conditional probability table, cptf.
 The cpt values are assumed to be for the ordering par+[var]
 ""
 Factor_stored.__init__(self, pars+[var], cpt)
 self.child = var
 self.parents = pars
 assert self.size==len(cpt), "Table size incorrect " + str(self)

cond_dist returns the probability distribution of the child given values from the
parent. This code is based on assignment_to_index. Similarly, cont_prob returns
the probability that the child has a particular value given an assignment of
values to the parents. In both of these par_assignment is a dict that assigns all of
the parents (and can also assign other variables, but these are ignored).

def cond_dist(self, par_assignment):
 """returns the distribution (a val:prob dictionary) over the child given
 assignment to the parents
 """
 par_assignment is a variable:value dictionary that assigns values to parents
 ""
 index = 0
 for var in self.parents:
 index += var.val_to_index[par_assignment[var]]*self.var_offsets[var]
 # index is the position where the distribution starts
 return {self.child.domain[i]:self.values[index+i] for i in range(len(self.child.domain))}

def cond_prob(self, par_assignment, child_value):
 """returns the probability child has child_value given
 assignment to the parents
 """
 par_assignment is a variable:value dictionary that assigns values to parents
child_value is a value to the child

```python
index = self.child.val_to_index[child_value]
for var in self.parents:
    index += var.val_to_index[par_assignment[var]]*self.var_offsets[var]
return self.values[index]
```

A `Factor_rename` is a factor that is the result renaming the variables in the factor. It takes a factor, `fac`, and a `new : old` dictionary, where `new` is the name of a variable in the resulting factor and `old` is the corresponding name in `fac`. This assumes that all variables are renamed.

```
class Factor_rename(Factor):
    def __init__(self,fac,renaming):
        Factor.__init__(self,list(renaming.keys()))
        self.orig_fac = fac
        self.renaming = renaming

    def get_value(self,assignment):
        return self.orig_fac.get_value({self.renaming[var]:val
                                          for (var,val) in assignment.items()
                                          if var in self.variables})
```

8.3 Graphical Models

A graphical model consists of a set of variables and a set of factors. A belief network is a graphical model where all of the factors represent conditional probabilities. There are some operations (such as pruning variables) which are applicable to belief networks, but are not applicable to more general models. At the moment, we will treat them as the same.

```
class Graphical_model(object):
    """The class of graphical models.
    A graphical model consists of a set of variables and a set of factors.
    ""
    List vars is a list of variables
    List factors is a list of factors
    ""
    def __init__(self,vars=None,factors=None):
        self.variables = vars
        self.factors = factors
```

A belief network is a graphical model where all of the factors are conditional probabilities, and every variable has a conditional probability. This only checks the first condition.
class Belief_network(Graphical_model):
 """The class of belief networks.""
 def __init__(self, vars=None, factors=None):
 """vars is a list of variables
 factors is a list of factors. Here we assume that all of the factors are instances of Prob.
 ""
 Graphical_model.__init__(self, vars, factors)
 assert all(isinstance(f, Prob) for f in factors) if factors else True

Each of the inference methods implements the query method that computes the posterior probability of a variable given a dictionary of variable:value observations. These are all Displayable because they implement the display method which is currently text-based.

from display import Displayable
class Inference_method(Displayable):
 """The abstract class of graphical model inference methods""
 def query(self, qvar, obs={}):
 raise NotImplemented("Inference_method query") # abstract method

The first example belief network is a simple chain $A \rightarrow B \rightarrow C$.

from probVariables import Variable
from probFactors import Prob
boolean = [False, True]
A = Variable("A", boolean)
B = Variable("B", boolean)
C = Variable("C", boolean)
f_a = Prob(A, [], [0.4, 0.6])
f_b = Prob(B, [A], [0.9, 0.1, 0.2, 0.8])
f_c = Prob(C, [B], [0.5, 0.5, 0.3, 0.7])
bn1 = Belief_network([A, B, C], [f_a, f_b, f_c])

The second Bayesian network is the report-of-leaving example from Poole and Mackworth, Artificial Intelligence, 2010 http://artint.info. This is Example 6.10 (page 236) shown in Figure 6.1.
8.4 Variable Elimination

An instance of a VE object takes in a graphical model. The query method uses variable elimination to compute the probability of a variable given observations on some other variables.

```python
from probFactors import Factor, Factor_observed, Factor_sum, factor_times
from probGraphicalModels import Graphical_model, Inference_method

class VE(Inference_method):
    """The class that queries Graphical Models using variable elimination."

gm = graphical model to query

http://aipython.org
```
def __init__(self, gm=None):
 self.gm = gm

def query(self, var, obs={}, elim_order=None):
 """computes P(var|obs) where
 var is a variable
 obs is a variable:value dictionary""
 if var in obs:
 return [1 if val == obs[var] else 0 for val in var.domain]
 else:
 if elim_order == None:
 elim_order = self.gm.variables
 projFactors = [self.project_observations(fact, obs)
 for fact in self.gm.factors]
 for v in elim_order:
 if v != var and v not in obs:
 projFactors = self.eliminate_var(projFactors, v)
 unnorm = factor_times(var, projFactors)
 p_obs = sum(unnorm)
 self.display(1, "Unnormalized probs:", unnorm, "Prob obs:", p_obs)
 return {val: pr/p_obs for val, pr in zip(var.domain, unnorm)}

To project observations onto a factor, for each variable that is observed in the factor, we construct a new factor that is the factor projected onto that variable. Factor_observed creates a new factor that is the result is assigning a value to a single variable.

def project_observations(self, factor, obs):
 """Returns the resulting factor after observing obs
 obs is a dictionary of variable:value pairs.
 ""
 if any((var in obs) for var in factor.variables):
 # a variable in factor is observed
 return Factor_observed(factor, obs)
 else:
 return factor

def eliminate_var(self, factors, var):
 """Eliminate a variable var from a list of factors.
 Returns a new set of factors that has var summed out.
 ""
 self.display(2, "eliminating ", str(var))
 contains_var = []
 not_contains_var = []
 for fac in factors:
 if var in fac.variables:
 contains_var.append(fac)
 else:
8.5. Stochastic Simulation

8.5.1 Sampling from a discrete distribution

The method `sample_one` generates a single sample from a (possible unnormalized) distribution. `dist` is a value : weight dictionary, where weight ≥ 0. This returns a value with probability in proportion to its weight.

```python
from probGraphicalModels import bn1, A,B,C
bn1v = VE(bn1)
## bn1v.query(A,{}
## bn1v.query(C,{}
## Inference_method.max_display_level = 3 # show more detail in displaying
## Inference_method.max_display_level = 1 # show less detail in displaying
## bn1v.query(A,(C:True))
## bn1v.query(B,(A:True,C:False))

from probGraphicalModels import bn2,Al,Fi,Le,Sm,Ta
bn2v = VE(bn2) # answers queries using variable elimination
## bn2v.query(Le,{}
## Inference_method.max_display_level = 0 # show no detail in displaying
## bn2v.query(Le,{}
## bn2v.query(Ta,{},elim_order=[Sm,Re,Le,Al,Fi])
## bn2v.query(Ta,(Re:True))
## bn2v.query(Ta,(Re:True,Sm:False))

from probGraphicalModels import bn3, Season, Sprinkler, Rained, Grass_wet, Grass_shiny, Shoes_wet
bn3v = VE(bn3)
## bn3v.query(Shoes_wet,{}
## bn3v.query(Shoes_wet,{}
## bn3v.query(Shoes_wet,(Rained:True))
## bn3v.query(Shoes_wet,(Grass_shiny:True))
## bn3v.query(Shoes_wet,(Grass_shiny:False,Rained:True))
```

```python
def sample_one(dist):
    # Code...
```
returns the index of a single sample from normalized distribution dist.'"
 rand = random.random() * sum(dist.values())
 cum = 0 # cumulative weights
 for v in dist:
 cum += dist[v]
 if cum > rand:
 return v

If we want to generate multiple samples, repeatedly calling sample_one may
not be efficient. If we want to generate \(n \) samples, and the distribution is over
\(m \) values, sample_one takes time \(O(mn) \). If \(m \) and \(n \) are of the same order of
magnitude, we can do better.

The method sample_multiple generates multiple samples from a distribution
defined by \(dist \), where \(dist \) is a value : weight dictionary, where weight \(\geq 0 \)
and the weights cannot all be zero. This returns a list of values, of length
num_samples, where each sample is selected with a probability proportional to
its weight.

The method generates all of the random numbers, sorts them, and then
goes through the distribution once, saving the selected samples.

Exercise 8.1
What is the time and space complexity the following 4 methods to generate \(n \)
samples, where \(m \) is the length of \(dist \):
(a) \(n \) calls to sample_one
(b) sample_multiple
(c) Create the cumulative distribution (choose how this is represented) and, for
each random number, do a binary search to determine the sample associated
with the random number.
(d) Choose a random number in the range \([i/n, (i + 1)/n) \) for each \(i \in \text{range}(n) \),
where \(n \) is the number of samples. Use these as the random numbers to
select the particles. (Does this give random samples?)
8.5. Stochastic Simulation

For each method suggest when it might be the best method.

The test_sampling method can be used to generate the statistics from a number of samples. It is useful to see the variability as a function of the number of samples. Try it for few samples and also for many samples.

```python
probStochSim.py — (continued)

def test_sampling(dist, num_samples):
    """Given a distribution, dist, draw num_samples samples and return the resulting counts
    ""
    result = {v:0 for v in dist}
    for v in sample_multiple(dist, num_samples):
        result[v] += 1
    return result

# try the following queries a number of times each:
# test_sampling({1:1,2:2,3:3,4:4}, 100)
# test_sampling({1:1,2:2,3:3,4:4}, 100000)
```

8.5.2 Sampling Methods for Belief Network Inference

A Sampling_inference_method is an Inference_method, but the query method also takes arguments for the number of samples and the sample-order (which is an ordering of factors). The first methods assume a Bayesian network (and not an undirected graphical model).

```python
probStochSim.py — (continued)

class Sampling_inference_method(Inference_method):
    """The abstract class of sampling-based belief network inference methods"
    def query(self,qvar,obs={},number_samples=1000,sample_order=None):
        raise NotImplementedError("Sampling_inference_method query") # abstract

Some of the sampling methods require a sample order of factors representing conditional probabilities, where the parents of a node must come before the node in the sample order. The following method computes such a sample ordering, and is used when the sample_order argument is None.

```python
probStochSim.py — (continued)

def select_sample_ordering(bn):
 """creates a sample ordering of factors such that the parents of a node are before the node.
 raises StopIteration if there is no such ordering. This would occur in next(.).
 ""
 sample_order=[]
 defined = set() # set of variables whose probability is defined
 factors_to_sample = bn.factors.copy()
 while factors_to_sample:
 fac = next(f for f in factors_to_sample
 if all(par in defined for par in f.parents))

http://aipython.org Version 0.7.7 August 8, 2019
factors_to_sample.remove(fac)
sample_order.append(fac)
defined.add(fac.child)
return sample_order

8.5.3 Rejection Sampling

```python
class Rejection_sampling(Sampling_inference_method):
    """The class that queries Graphical Models using Rejection Sampling.
    """
    def __init__(self,bn=None):
        self.bn = bn
        self.label = "Rejection Sampling"
    def query(self,qvar,obs={},number_samples=1000,sample_order=None):
        """computes P(qvar|obs) where
        qvar is a variable.
        obs is a variable:value dictionary.
        sample_order is a list of factors where factors defining the parents
        come before the factors for the child.
        """
        if sample_order is None:
            sample_order = select_sample_ordering(self.bn)
        self.display(2,*[f.child for f in sample_order],sep="\t")
        counts = {val:0 for val in qvar.domain}
        for i in range(number_samples):
            rejected = False
            sample = {}
            for fac in sample_order:
                nvar = fac.child  #next variable
                val = sample_one(fac.cond_dist(sample))
                self.display(2,val,end="\t")
                if nvar in obs and obs[nvar] != val:
                    rejected = True
                    self.display(2,"Rejected")
                    break
                sample[nvar] = val
            if not rejected:
                counts[sample[qvar]] += 1
                self.display(2,"Accepted")
        tot = sum(counts.values())
        return counts, {c:divide(v,tot) for (c,v) in counts.items()}
```

It is possible that all samples get rejected. In that case, Python would give
as a arithmetic error. Instead, we implement the convention that 0/0 = 1. You
need to be careful is using these numbers as probabilities.

http://aipython.org
8.5. Stochastic Simulation

```python
def divide(num, denom):
    """returns num/denom without divide-by-zero errors.
    defines 0/0 to be 1."""
    if denom == 0:
        return 1.0
    else:
        return num / denom
```

8.5.4 Likelihood Weighting

Likelihood weighting includes a weight for each sample. Instead of rejecting
samples based on observations, likelihood weighting changes the weights of
the sample in proportion with the probability of the observation. The weight
then becomes the probability that the variable would have been rejected.

```python
class Likelihood_weighting(Sampling_inference_method):
    """The class that queries Graphical Models using Likelihood weighting.
    """
    def __init__(self, bn=None):
        self.bn = bn
        self.label = "Likelihood weighting"
    
    def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
        """computes P(qvar|obs) where
        qvar is a variable.
        obs is a variable:value dictionary.
        sample_order is a list of factors where factors defining the parents
        come before the factors for the child.
        """
        if sample_order is None:
            sample_order = select_sample_ordering(self.bn)
        self.display(2, *[f.child for f in sample_order
            if f.child not in obs], sep="\t")
        counts = [0 for val in qvar.domain]
        for i in range(number_samples):
            sample = {}
            weight = 1.0
            for fac in sample_order:
                nvar = fac.child # next variable sampled
                if nvar in obs:
                    sample[nvar] = obs[nvar]
                    weight *= fac.get_value(sample)
                else:
                    val = sample_one(fac.cond_dist(sample))
                    self.display(2, val, end="\t")
                    sample[nvar] = val
                    counts[sample[qvar]] += weight
```

http://aipython.org Version 0.7.7 August 8, 2019
self.display(2, weight)
tot = sum(counts)
return counts, {c:v/tot for (c,v) in counts.items()}

Exercise 8.2 Change this algorithm so that it does importance sampling using a proposal distribution. It needs sample_one using a different distribution and then update the weight of the current sample. For testing, use a proposal distribution that only specifies probabilities for some of the variables (and the algorithm uses the probabilities for the network in other cases).

8.5.5 Particle Filtering

In this implementation, a particle is a variable : value dictionary. Because adding a new value to dictionary involves a side effect, the dictionaries need to be copied during resampling.

class Particle_filtering(Sampling_inference_method):
 """The class that queries Graphical Models using Particle Filtering.
 bn is a belief network to query
 """
 def __init__(self, bn=None):
 self.bn = bn
 self.label = "Particle Filtering"

 def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
 """computes P(qvar|obs) where
 qvar is a variable.
 obs is a variable:value dictionary.
 sample_order is a list of factors where factors defining the parents
 come before the factors for the child.
 """
 if sample_order is None:
 sample_order = select_sample_ordering(self.bn)
 self.display(2,*[f.child for f in sample_order
 if f.child not in obs],sep="\t")
 particles = [{}) for i in range(number_samples)]
 for fac in sample_order:
 nvar = fac.child # the variable sampled
 if nvar in obs:
 weights = {part:fac.cond_prob(part,obs[nvar]) for part in particles}
 particles = [p.copy for p in resample(particles, weights, number_samples)]
 else:
 for part in particles:
 part[nvar] = sample_one(fac.cond_dist(part))
 self.display(2,part[nvar],end="\t")
 counts = [0 for val in qvar.domain]
 for part in particles:
 counts[part[qvar]] += 1
8.5. Stochastic Simulation

```
self.display(2,weight)
return counts
```

Resampling

Resample is based on `sample_multiple` but works with an array of particles. (Aside: Python doesn’t let us use `sample_multiple` directly as it uses a dictionary, and particles, represented as dictionaries can’t be the key of dictionaries).

```
def resample(particles, weights, num_samples):
    """returns num_samples copies of particles resampled according to weights.
    particles is a list of particles
    weights is a list of positive numbers, of same length as particles
    num_samples is n integer
    ""
    total = sum(weights)
    rands = sorted(random.random()*total for i in range(num_samples))
    result = []
    cum = weights[0] # cumulative sum
    index = 0
    for r in rands:
        while r>cum:
            index += 1
            cum += weights[index]
        result.append(particles[index])
    return result
```

8.5.6 Examples

```
from probGraphicalModels import bn1, A,B,C
bn1r = Rejection_sampling(bn1)
bn1L = Likelihood_weighting(bn1)
## Inference_method.max_display_level = 2 # detailed tracing for all inference methods
## bn1r.query(A,{})
## bn1r.query(C,{})
## bn1r.query(A,{C:True})
## bn1r.query(B,{A:True,C:False})

from probGraphicalModels import bn2,Al,Fi,Le,Re,Sm,Ta
bn2r = Rejection_sampling(bn2) # answers queries using rejection sampling
bn2L = Likelihood_weighting(bn2) # answers queries using rejection sampling
bn2p = Particle_filtering(bn2) # answers queries using particle filtering
## bn2r.query(Ta,{})
## bn2r.query(Ta,{})
## bn2r.query(Ta,{Re:True})
## Inference_method.max_display_level = 0 # no detailed tracing for all inference methods
```
bn2r.query(Ta,{Re:True},number_samples=100000)
bn2r.query(Ta,{Re:True,Sm:False})
bn2r.query(Ta,{Re:True,Sm:False},number_samples=100)
bn2L.query(Ta,{Re:True,Sm:False},number_samples=100)
bn2L.query(Ta,{Re:True,Sm:False},number_samples=100)

```python
from probGraphicalModels import bn3, Season, Sprinkler
from probGraphicalModels import Rained, Grass_wet, Grass_shiny, Shoes_wet
bn3r = Rejection_sampling(bn3) # answers queries using rejection sampling
bn3L = Likelihood_weighting(bn3) # answers queries using rejection sampling
bn3p = Particle_filtering(bn3) # answers queries using particle filtering
#bn3r.query(Shoes_wet,{Grass_shiny:True,Rained:True})
#bn3L.query(Shoes_wet,{Grass_shiny:True,Rained:True})
#bn3p.query(Shoes_wet,{Grass_shiny:True,Rained:True})
```

Exercise 8.3 This code keeps regenerating the distribution of a variable given its parents. Implement one or both of the following, and compare them to the original. Make \texttt{cond_dist} return a slice that corresponds to the distribution, and then use the slice instead of the dictionary (a list slice does not generate new data structures). Make \texttt{cond_dist} remember values it has already computed, and only return these.

8.5.7 Plotting Behaviour of Stochastic Simulators

The stochastic simulation runs can give different answers each time they are run. For the algorithms that give the same answer in the limit as the number of samples approaches infinity (as do all of these algorithms), the algorithms can be compared by comparing the accuracy for multiple runs. Summary statistics like the variance may provide some information, but the assumptions behind the variance being appropriate (namely that the distribution is approximately Gaussian) may not hold for cases where the predictions are bounded and often skewed.

It is more appropriate to plot the distribution of predictions over multiple runs. The \texttt{plot_stats} method plots the prediction of a particular variable (or for the partition function) for a number of runs of the same algorithm. On the x-axis, is the prediction of the algorithm. On the y-axis is the number of runs with prediction less than or equal to the x value. Thus this is like a cumulative distribution over the predictions, but with counts on the y-axis.

Note that for runs where there are no samples that are consistent with the observations (as can happen with rejection sampling), the prediction of probability is 1.0 (as a convention for 0/0).

That variable \texttt{what} contains the query variable, or \texttt{what} is “$\texttt{prob_ev}$”, the probability of evidence.

```python
import matplotlib.pyplot as plt
```

http://aipython.org
8.6. Markov Chain Monte Carlo

The following implements Gibbs sampling, a form of Markov Chain Monte Carlo (MCMC).

```python
# probMCMC.py — Markov Chain Monte Carlo (Gibbs sampling)

import random
from probGraphicalModels import Inference_method
from probStochSim import sample_one, Sampling_inference_method

http://aipython.org
```

8.6 Markov Chain Monte Carlo

The following implements Gibbs sampling, a form of Markov Chain Monte Carlo (MCMC).
class Gibbs_sampling(Sampling_inference_method):
 """The class that queries Graphical Models using Gibbs Sampling.
 bn is a graphical model (e.g., a belief network) to query
 """
 def __init__(self, bn=None):
 self.bn = bn
 self.label = "Gibbs Sampling"

 def query(self, qvar, obs={}, number_samples=1000, burn_in=100, sample_order=None):
 """computes P(qvar|obs) where
 qvar is a variable.
 obs is a variable:value dictionary.
 sample_order is a list of non-observed variables in order.
 """
 counts = {val:0 for val in qvar.domain}
 if sample_order is not None:
 variables = sample_order
 else:
 variables = [v for v in self.bn.variables if v not in obs]
 var_to_factors = {v:set() for v in self.bn.variables}
 for fac in self.bn.factors:
 for var in fac.variables:
 var_to_factors[var].add(fac)
 sample = {var:random.choice(var.domain) for var in variables}
 self.display(2, "Sample:", sample)
 sample.update(obs)
 for i in range(burn_in + number_samples):
 if sample_order == None:
 random.shuffle(variables)
 for var in variables:
 # get probability distribution of var given its neighbours
 vardist = {val:1 for val in var.domain}
 for val in var.domain:
 sample[var] = val
 for fac in var_to_factors[var]: # Markov blanket
 vardist[val] *= fac.get_value(sample)
 sample[var] = sample_one(vardist)
 if i >= burn_in:
 counts[sample[qvar]] += 1
 tot = sum(counts.values())
 return counts, {c:v/tot for (c,v) in counts.items()}

from probGraphicalModels import bn1, A, B, C
bnlg = Gibbs_sampling(bn1)
Inference_method.max_display_level = 2 # detailed tracing for all inference methods
bnlg.query(A,{})
bnlg.query(C,{})
bnlg.query(A,{C:True})
bnlg.query(B,{A:True,C:False})
8.7 Hidden Markov Models

This code for hidden Markov models is independent of the graphical models code, to keep it simple. Section 8.8 gives code that models hidden Markov models, and more generally, dynamic belief networks, using the graphical models code.

This HMM code assumes there are multiple Boolean observation variables that depend on the current state and are independent of each other given the state.

Consider the following example. Suppose you want to unobtrusively keep track of an animal in a triangular enclosure using sound. Suppose you have 3 microphones that provide unreliable (noisy) binary information at each time step. The animal is either close to one of the 3 points of the triangle or in the middle of the triangle.

Exercise 8.4 Change the code so that it can have multiple query variables. Make the list of query variable be an input to the algorithm, so that the default value is the list of all non-observed variables.

Exercise 8.5 In this algorithm, explain where it computes the probability of a variable given its Markov blanket. Instead of returning the average of the samples for the query variable, it is possible to return the average estimate of the probability of the query variable given its Markov blanket. Does this converge to the same answer as the given code? Does it converge faster, slower, or the same?
The observation model is as follows. If the animal is in a corner, it will be detected by the microphone at that corner with probability 0.6, and will be independently detected by each of the other microphones with a probability of 0.1. If the animal is in the middle, it will be detected by each microphone with a probability of 0.4.

The transition model is as follows: If the animal is in a corner it stays in the same corner with probability 0.80, goes to the middle with probability 0.1 or goes to one of the other corners with probability 0.05 each. If it is in the middle, it stays in the middle with probability 0.7, otherwise it moves to one of the corners, each with probability 0.1.

Initially the animal is in one of the four states, with equal probability.

8.7.1 Exact Filtering for HMMs

A HMM_VE_filter has a current state distribution which can be updated by observing or by advancing to the next time.
8.7. Hidden Markov Models

from display import Displayable

class HMM_VE_filter(Displayable):
 def __init__(self, hmm):
 self.hmm = hmm
 self.state_dist = hmm.indist

 def filter(self, obsseq):
 """updates and returns the state distribution following the sequence of
 observations in obsseq using variable elimination.
 """
 for obs in obsseq:
 self.advance() # advance time
 self.observe(obs) # observe
 return self.state_dist

 def observe(self, obs):
 """updates state conditioned on observations.
 obs is a list of values for each observation variable"
 for i in self.hmm.obsvars:
 self.state_dist = {st: self.state_dist[st] * (self.hmm.pobs[i][st]
 if obs[i] else (1 - self.hmm.pobs[i][st]))
 for st in self.hmm.states}
 norm = sum(self.state_dist.values()) # normalizing constant
 self.state_dist = {st: self.state_dist[st] / norm for st in self.hmm.states}
 self.display(2, "After observing", obs, "state distribution:", self.state_dist)

 def advance(self):
 """advance to the next time"
 nextstate = {st: 0.0 for st in self.hmm.states} # distribution over next states
 for j in self.hmm.states: # j ranges over next states
 for i in self.hmm.states: # i ranges over previous states
 nextstate[j] += self.hmm.trans[i][j] * self.state_dist[i]
 self.state_dist = nextstate

The following are some queries for hmm1.

http://aipython.org

Version 0.7.7
August 8, 2019
hmm1f3 = HMM_VE_filter(hmm1)
hmm1f3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':0}])

How do the following differ in the resulting state distribution?
Note they start the same, but have different initial observations.
HMM_VE_filter.max_display_level = 1 # show less detail in displaying
for i in range(100): hmm1f1.advance()
hmm1f1.state_dist
for i in range(100): hmm1f3.advance()
hmm1f3.state_dist

Exercise 8.6 The localization example in the book is a controlled HMM, where there is a given action at each time and the transition depends on the action. Change the code to allow for controlled HMMs. Hint: the action only influences the state transition.

Exercise 8.7 The representation assumes that there are a list of Boolean observations. Extend the representation so that the each observation variable can have multiple discrete values. You need to choose a representation for the model, and change the algorithm.

8.7.2 Particle Filtering for HMMs

In this implementation a particle is just a state. If you want to do some form of smoothing, a particle should probably be a history of states. This maintains, particles, an array of states, weights an array of (non-negative) real numbers, such that weights[i] is the weight of particles[i].

```python
from display import Displayable
from probStochSim import resample

class HMM_particle_filter(Displayable):
    def __init__(self,hmm,number_particles=1000):
        self.hmm = hmm
        self.particles = [sample_one(hmm.indist)
                          for i in range(number_particles)]
        self.weights = [1 for i in range(number_particles)]

    def filter(self, obsseq):
        """returns the state distribution following the sequence of
        observations in obsseq using particle filtering.
        
        Note that it first advances time.
        This is what is required if it is called after previous filtering.
        If that is not what is wanted initially, do an observe first.
        """
        for obs in obsseq:
            self.advance() # advance time
            self.observe(obs) # observe
```

http://aipython.org
The following are some queries for `hmm1`.

```
probHMM.py — (continued)

hmm1pf1 = HMM_particle_filter(hmm1)
# HMM_particle_filter.max_display_level = 2 # show each step
# hmm1pf1.filter([{'m1':0,'m2':1,'m3':1},{'m1':1,'m2':0,'m3':1}])
# hmm1pf2 = HMM_particle_filter(hmm1)
# hmm1pf2.filter([{'m1':0,'m2':1,'m3':0},{'m1':1,'m2':0,'m3':0},
#                 {'m1':0,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0},
#                 {'m1':1,'m2':1,'m3':0},{m1':0,'m2':1,'m3':0},
#                 {'m1':0,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0},
#                 {'m1':0,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0},
#                 {'m1':0,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0}])
# hmm1pf3 = HMM_particle_filter(hmm1)
# hmm1pf3.filter([{'m1':1,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0},{m1':1,'m2':0,'m3':0},
#                 {'m1':0,'m2':0,'m3':0},{m1':0,'m2':0,'m3':0},
#                 {'m1':1,'m2':0,'m3':0}])
```

Exercise 8.8 A form of importance sampling can be obtained by not resampling.

http://aipython.org
Is it better or worse than particle filtering? Hint: you need to think about how they can be compared. Is the comparison different if there are more states than particles?

Exercise 8.9 Extend the particle filtering code to continuous variables and observations. In particular, suppose the state transition is a linear function with Gaussian noise of the previous state, and the observations are linear functions with Gaussian noise of the state. You may need to research how to sample from a Gaussian distribution.

8.7.3 Generating Examples

The following code is useful for generating examples.

```python
def simulate(hmm, horizon):
    """returns a pair of (state sequence, observation sequence) of length horizon."
    for each time t, the agent is in state_sequence[t] and observes observation_sequence[t]
    """
    state = sample_one(hmm.indist)
    obsseq=[]
    stateseq=[]
    for time in range(horizon):
        stateseq.append(state)
        newobs = {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
            for obs in hmm.obsvars}
        obsseq.append(newobs)
        state = sample_one(hmm.trans[state])
    return stateseq,obsseq

def simobs(hmm, stateseq):
    """returns observation sequence for the state sequence"""
    obsseq=[]
    for state in stateseq:
        newobs = {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
            for obs in hmm.obsvars}
        obsseq.append(newobs)
    return obsseq

def create_eg(hmm, n):
    """Create an annotated example for horizon n""
    seq,obs = simulate(hmm,n)
    print("True state sequence:",seq)
    print("Sequence of observations: ",obs)
    hmmfilter = HMM_VE_filter(hmm)
    dist = hmmfilter.filter(obs)
    print("Resulting distribution over states: ",dist)
```

http://aipython.org
Version 0.7.7
August 8, 2019
8.8 Dynamic Belief Networks

A dynamic belief network consists of:

- A set of features. A variable is a feature-time pair.
- An initial distribution over the features at time 0. This is a belief network with all variables being time 0 variables.
- A specification of the dynamics. Here we define the how the variables one time depend on variables at that time and the previous time, in such a way that the graph is acyclic.

There are a number of ways that reasoning can be carried out in a DBN, including:

- Rolling out the DBN for some time period, and using standard belief network inference. The latest time that needs to be in the rolled out network is the time of the latest observation or the time of a query (whichever is later). This allows us to observe any variables at any time and query any variables at any time. However, the unrolled Bayesian network may be very large. We also need to construct multiple copies of each feature.

- Just representing the variables “now”. In this approach we can observe and query the current variables. We can then move to the next time. This does not allow for arbitrary historical queries (about the past or the future), but can be much simpler.

Here we will implement the second of these.

class DBN_variable(Variable):
 """A random variable that incorporates
A variable can have both a name and an index. The index defaults to 1.
Equality is true if they are both the name and the index are the same."""
 def __init__(self,name,domain=[False,True],index=1):
 Variable.__init__(self,name,domain)
 self.index = index
 self.previous = None
 def __lt__(self,other):
 if self.name != other.name:
 return self.name<other.name
```python
else:
    return self.index<other.index

def __gt__(self, other):
    return other<self

def __str__(self):
    if self.index==1:
      return self.name
    # else:
    return self.name+"_"+str(self.index)

__repr__ = __str__

def variable_pair(name, domain=[False,True]):
    """returns a variable and its predecessor. This is used to define 2-stage DBNs
    If the name is X, it returns the pair of variables X0,X""
    var = DBN_variable(name, domain)
    var0 = DBN_variable(name, domain, index=0)
    var.previous = var0
    return var0, var
```

Here is a 3 variable DBN:

```python
A0, A1 = variable_pair("A")
B0, B1 = variable_pair("B")
C0, C1 = variable_pair("C")
```

dynamics
pc = Prob(C1,[B1,C0],[0.03,0.97,0.38,0.62,0.23,0.77,0.78,0.22])
pb = Prob(B1,[A0,A1],[0.5,0.5,0.77,0.23,0.4,0.6,0.83,0.17])
pa = Prob(A1,[A0,B0],[0.1,0.9,0.65,0.35,0.3,0.7,0.8,0.2])

initial distribution
pa0 = Prob(A1,[],[0.9,0.1])
pb0 = Prob(B1,[A1],[0.3,0.7,0.8,0.2])
pc0 = Prob(C1,[],[0.2,0.8])
dbn1 = DBN([A1,B1,C1],[pa,pb,pc],[pa0,pb0,pc0])

Here is the animal example

from probHMM import closeMic, farMic, midMic, sm, mmc, sc, mcm, mcc

Pos_0,Pos_1 = variable_pair("Position",domain=[0,1,2,3])
Mic1_0,Mic1_1 = variable_pair("Mic1")
Mic2_0,Mic2_1 = variable_pair("Mic2")
Mic3_0,Mic3_1 = variable_pair("Mic3")

conditional probabilities - see hmm for the values of sm,mmc, etc
ppos = Prob(Pos_1, [Pos_0],
 [sm, mmc, mmc, mmc, # was in middle
 mcm, sc, mcm, mcm, # was in corner 1
 mcm, mcm, sc, mcm, # was in corner 2
 mcm, mcm, mcm, sc]) # was in corner 3
pm1 = Prob(Mic1_1, [Pos_1], [1-midMic, midMic, 1-closeMic, closeMic,
 1-farMic, farMic, 1-farMic, farMic])
pm2 = Prob(Mic2_1, [Pos_1], [1-midMic, midMic, 1-farMic, farMic,
 1-closeMic, closeMic, 1-farMic, farMic])
pm3 = Prob(Mic3_1, [Pos_1], [1-midMic, midMic, 1-farMic, farMic,
 1-farMic, farMic, 1-closeMic, closeMic])
ipos = Prob(Pos_1,[],[0.25, 0.25, 0.25, 0.25])
dbn_an =DBN([Pos_1,Mic1_1,Mic2_1,Mic3_1],
 [ppos, pm1, pm2, pm3],
 [ipos, pm1, pm2, pm3])

class DBN_VE_filter(VE):
 def __init__(self,dbn):
 self.dbn = dbn
 self.current_factors = dbn.init_factors
 self.current_obs = {}

 def observe(self, obs):
 """updates the current observations with obs.
 obs is a variable:value dictionary where variable is a current
 variable."""
assert all(self.current_obs[var]==obs[var] for var in obs)

self.current_obs.update(obs)

def query(self, var):
 # returns the posterior probability of current variable var"
 return VE(Graphical_model(self.dbn.vars1, self.current_factors)).query(var, self.current_obs)

def advance(self):
 # advance to the next time"
 prev_factors = [self.make_previous(fac) for fac in self.current_factors]
 prev_obs = {var.previous: val for var, val in self.current_obs.items()}
 two_stage_factors = prev_factors + self.dbn.transition_factors
 self.current_factors = self.elim_vars(two_stage_factors, self.dbn.vars0, prev_obs)
 self.current_obs = {}

 def make_previous(self, fac):
 # "creates new factor from fac where the current variables in fac
 # are renamed to previous variables.
 return Factor_rename(fac, {var.previous: var for var in fac.variables})

 def elim_vars(self, factors, vars, obs):
 for var in vars:
 if var in obs:
 factors = [self.project_observations(fac, obs) for fac in factors]
 else:
 factors = self.eliminate_var(factors, var)

 return factors

Example queries:

---_probDBN.py — (continued) ____________________________

df = DBN_VE_filter(dbn1)
df.observe({B1:True}); df.advance(); df.observe({C1:False})
df.query(B1)
df.advance()
df.query(B1)
dfa = DBN_VE_filter(dbn_an)
dfa.observe({Mic1_1:0, Mic2_1:1, Mic3_1:1})
dfa.advance()
dfa.observe({Mic1_1:1, Mic2_1:0, Mic3_1:1})
dfa.query(Pos_1)
Chapter 9

Planning with Uncertainty

9.1 Decision Networks

The decision network code builds on the representation for belief networks of Chapter 8.

We first allow for factors that define the utility. Here the utility is a function of the variables in $vars$, and the table is a list that enumerates the values as in Section 8.2.

```
from probGraphicalModels import Graphical_model
from probFactors import Factor_stored
from probVariables import Variable
from probFactors import Prob

class Utility(Factor_stored):
    """A factor defined by a utility""
    def __init__(self,vars,table):
        """Creates a factor on vars from the table.
        The table is ordered according to vars.
        """
        Factor_stored.__init__(self,vars,table)
        assert self.size==len(table),"Table size incorrect "+str(self)
```

A decision variable is a like a random variable with a string name, and a domain, which is a list of possible values. The decision variable also includes the parents, a list of the variables whose value will be known when the decision is made.

```
class DecisionVariable(Variable):
    def __init__(self,name,domain,parents):
```

167
Variable.__init__(self,name,domain)
self.parents = parents
self.all_vars = set(parents) | {self}

A decision network is a graphical model where the variables can be random variables or decision variables. In the factors we assume there is one utility factor.

class DecisionNetwork(Graphical_model):
 def __init__(self,vars=None,factors=None):
 """vars is a list of variables
 factors is a list of factors (instances of Prob and Utility)
 ""
 Graphical_model.__init__(self,vars,factors)

VE_DN is variable elimination for decision networks. The method optimize is used to optimize all the decisions. Note that optimize requires a legal elimina-
tion ordering of the random and decision variables, otherwise it will give an exception. (A decision node can only be maximized if the variables that are not its parents have already been eliminated.)

class VE_DN(VE):
 """Variable Elimination for Decision Networks""
 def __init__(self,dn=None):
 """dn is a decision network"
 VE.__init__(self,dn)
 self.dn = dn

 def optimize(self,elim_order=None,obs={}):
 if elim_order == None:
 elim_order = self.gm.variables
 policy = []
 proj_factors = [self.project_observations(fact,obs)
 for fact in self.dn.factors]
 for v in elim_order:
 if isinstance(v,DecisionVariable):
 to_max = [fac for fac in proj_factors
 if v in fac.variables and set(fac.variables) <= v.all_vars]
 assert len(to_max)==1, "illegal variable order " + str(elim_order) + " at " + str(v)
 newFac = Factor_max(v, to_max[0])
 policy.append(newFac.decision_fun)
 proj_factors = [fac for fac in proj_factors if fac is not to_max[0]] + [newFac]
 self.display(2,"maximizing",v,"resulting factor",newFac.brief())
 self.display(3,newFac)
 else:
 proj_factors = self.eliminate_var(proj_factors, v)
9.1. Decision Networks

assert len(proj_factors)==1,"Should there be only one element of proj_factors?"
value = proj_factors[0].get_value({})
return value,policy

class Factor_max(Factor_stored):
 """A factor obtained by maximizing a variable in a factor.
 Also builds a decision_function. This is based on Factor_sum.
 """
def __init__(self, dvar, factor):
 """dvar is a decision variable.
 factor is a factor that contains dvar and only parents of dvar
 """
 self.dvar = dvar
 self.factor = factor
 vars = [v for v in factor.variables if v is not dvar]
 Factor_stored.__init__(self,vars,None)
 self.values = [None]*self.size
 self.decision_fun = Factor_DF(dvar,vars,[None]*self.size)

def get_value(self,assignment):
 """lazy implementation: if saved, return saved value, else compute it"
 index = self.assignment_to_index(assignment)
 if self.values[index]:
 return self.values[index]
 else:
 max_val = float("-inf") # -infinity
 new_asst = assignment.copy()
 for elt in self.dvar.domain:
 new_asst[self.dvar] = elt
 fac_val = self.factor.get_value(new_asst)
 if fac_val>max_val:
 max_val = fac_val
 best_elt = elt
 self.values[index] = max_val
 self.decision_fun.values[index] = best_elt
 return max_val

A decision function is a stored factor.

class Factor_DF(Factor_stored):
 """A decision function"

def __init__(self,dvar, vars, values):
 Factor_stored.__init__(self,vars,values)
 self.dvar = dvar
 self.name = str(dvar) # Used in printing

The fire decision network of Figure 9.1 is represented as:

http://aipython.org
The following is the representation of the cheating decision of Figure 9.2. Note that we keep the names of the variables short (less than 8 characters) so that tables Python prints look good.
9.1. Decision Networks

Figure 9.2: Cheating Decision Network

```
decnNetworks.py — (continued)

grades = ['A', 'B', 'C', 'F']
Wa = Variable('Watched', boolean)
CC1 = Variable('Caught1', boolean)
CC2 = Variable('Caught2', boolean)
Pun = Variable('Punish', ['None', 'Suspension', 'Recorded'])
Gr1 = Variable('Grade_1', grades)
Gr2 = Variable('Grade_2', grades)
GrF = Variable('Fin_Grd', grades)
Ch1 = DecisionVariable('Cheat_1', boolean, set())  # no parents
Ch2 = DecisionVariable('Cheat_2', boolean, {Ch1, CC1})

p_wa = Prob(Wa, [], [0.7, 0.3])
p_cc1 = Prob(CC1, [Wa, Ch1], [1.0, 0.0, 0.9, 0.1, 1.0, 0.0, 0.5, 0.5])
p_cc2 = Prob(CC2, [Wa, Ch2], [1.0, 0.0, 0.9, 0.1, 1.0, 0.0, 0.5, 0.5])
p_pun = Prob(Pun, [CC1, CC2], [1.0, 0.0, 0.0, 0.5, 0.4, 0.1, 0.6, 0.2, 0.2, 0.5, 0.3])
p_gr1 = Prob(Gr1, [Ch1], [0.2, 0.3, 0.3, 0.2, 0.5, 0.3, 0.2, 0.0])
p_gr2 = Prob(Gr2, [Ch2], [0.2, 0.3, 0.3, 0.2, 0.5, 0.25, 0.25, 0.0])
p_fg = Prob(GrF, [Gr1, Gr2],
           [1.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.25,
            0.25, 0.25, 0.25, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.5,
            0.5, 0.0, 0.0, 0.25, 0.5, 0.25, 0.5, 0.25, 0.5, 0.25, 0.0, 0.0, 0.5,
            0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.25, 0.75, 0.25, 0.5, 0.25, 0.0,
            0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.25, 0.75, 0.0, 0.0, 0.0, 1.0])
utc = Utility([Pun, GrF], [100, 90, 70, 50, 40, 20, 10, 0, 70, 60, 40, 20])
```

http://aipython.org Version 0.7.7 August 8, 2019
9. Planning with Uncertainty

```python
cheat_dn = DecisionNetwork([Pun,CC2,Wa,GrF,Gr2,Gr1,Ch2,CC1,Ch1],
                          [p_wa, p_cc1, p_cc2, p_pun, p_gr1, p_gr2, p_fg, utc])

# VE_DN.max_display_level = 3 # if you want to show lots of detail
# v, p = VE_DN(cheat_dn).optimize(); print(v)
# for df in p: print(df, "\n") # print decision functions
```

9.2 Markov Decision Processes

We will represent a Markov decision process (MDP) directly, rather than using the variable elimination code, as we did for decision networks.

States and actions are represented as lists of strings. The data structures for transitions, rewards, q-values, etc., use the index of the state or the action. The names of the state with index i is in $states[i]$, and the name of action with index i is in $actions[i]$.

```python
from utilities import argmax

class MDP(object):
    def __init__(self, states, actions, trans, reward, discount):
        """states is a list or tuple of states.
        actions is a list or tuple of actions
        trans[s][a][s'] represents P(s'|a,s)
        reward[s][a] gives the expected reward of doing a in state s
        discount is a real in the range [0,1]
        ""
        self.states = states
        self.actions = actions
        self.trans = trans
        self.reward = reward
        self.discount = discount
        self.v0 = [0 for s in states] # initial value function
```

2 state partying example:

```python
from mdpProblem import MDP

#### Partying Decision Example ####

# States: Healthy Sick
# Actions: Relax Party

# trans[s][a][s'] gives P(s'|a,s)
# Relax Party
trans2 = (((0.95, 0.05), (0.7, 0.3)), # Healthy
          ((0.5, 0.5), (0.1, 0.9)) # Sick
           )

http://aipython.org  Version 0.7.7  August 8, 2019
9.3. Value Iteration

This implements value iteration, storing $V$.

This uses indexes of the states and actions (not the names). A value function is list, $v$, such that $v[s]$ is the value for state with index $s$. Similarly a policy $pi$ is represented as a list where $pi[s]$, where $s$ is the index of a state, returns the index of the action.

```python
def vi1(self, v):
 """carry out one iteration of value iteration and
 returns a value function (a list of a value for each state).
 v is the previous value function.
 """
```

Tiny game from Example 11.7 and Figure 11.8 of Poole and Mackworth, 2010:

```python
reward2 = ((7,10),(0,2))
healthy2 = MDP([['Healthy','Sick'], ['Relax','Party'], trans2, reward2, discount=0.8])
```

```python
reward[s][a] gives the expected reward of doing a in state s.
```
return [max([self.reward[s][a]+self.discount*product(self.trans[s][a],v)
    for a in range(len(self.actions))])
    for s in range(len(self.states))]

def vi(self,v0,n):
    """carries out n iterations of value iteration starting with value v0."
    Returns a value function
    ""
    val = self.v0
    for i in range(n):
        val= self.vi1(val)
    return val

def policy(self,v):
    """returns an optimal policy assuming the next value function is v
    v is a list of values for each state
    returns a list of the indexes of optimal actions for each state
    ""
    return [argmax(enumerate([self.reward[s][a]+self.discount*product(self.trans[s][a],v)
        for a in range(len(self.actions))])
        for s in range(len(self.states))]

def q(self,v):
    """returns the one-step-lookahead q-value assuming the next value function is v
    v is a list of values for each state
    returns a list of q values for each state. so that q[s][a] represents Q(s,a)
    ""
    return [[self.reward[s][a]+self.discount*product(self.trans[s][a],v)
        for a in range(len(self.actions))]
        for s in range(len(self.states))]

def product(l1,l2):
    """returns the dot product of l1 and l2"
    return sum([i1*i2
        for (i1,i2)
        in zip(l1,l2)])

The following gives a trace for the examples:
9.3. Value Iteration

```python
print(mdp.vi(mdp.v0,2))
vfin = mdp.vi(mdp.v0,numiter)
print("After",numiter,"iterations, values:")
print(vfin)
print("After",numiter,"iterations, Q-values:")
print(mdp.q(vfin))
print("After",numiter,"iterations, Policy:",
 [st+'->'+mdp.actions[act] for (st,act) in zip(mdp.states,mdp.policy(vfin))])
```

# Try the following:
# trace(healthy2,10)

**Exercise 9.1** Implement value iteration that stores the Q-values rather than the V-values. Does it work better than storing V? (What might better mean?)

**Exercise 9.2** Implement asynchronous value iteration. Try a number of different ways to choose the states and actions to update (e.g., sweeping through the state-action pairs, choosing them at random). Note that the best way may be to determine which states have had their Q-values change the most, and then update the previous ones, but that is not so straightforward to implement, because you need to find those previous states.
10.1 K-means

The k-means learner maintains two lists that suffice as sufficient statistics to classify examples, and to learn the classification:

- `class_counts` is a list such that `class_counts[c]` is the number of examples in the training set with `class = c`.

- `feature_sum` is a list such that `feature_sum[i][c]` is sum of the values for the `i`th feature `i` for members of class `c`. The average value of the `i`th feature in class `c` is

\[
\frac{\text{feature_sum}[i][c]}{\text{class_counts}[c]}
\]

The class is initialized by randomly assigning examples to classes, and updating the statistics for `class_counts` and `feature_sum`.

```python
from learnProblem import Data_set, Learner, Data_from_file
import random
import matplotlib.pyplot as plt

class K_means_learner(Learner):
 def __init__(self, dataset, num_classes):
 self.dataset = dataset
 self.num_classes = num_classes
 self.random_initialize()

 def random_initialize(self):
```

177
10. Learning with Uncertainty

```python
class_counts[c] is the number of examples with class=c
self.class_counts = [0]*self.num_classes
feature_sum[i][c] is the sum of the values of feature i for class c
self.feature_sum = [[0]*self.num_classes for feat in self.dataset.input_features]
for eg in self.dataset.train:
 cl = random.randrange(self.num_classes) # assign eg to random class
 self.class_counts[cl] += 1
 for (ind,feat) in enumerate(self.dataset.input_features):
 self.feature_sum[ind][cl] += feat(eg)
self.num_iterations = 0
self.display(1,"Initial class counts: ",self.class_counts)
```

The distance from (the mean of) a class to an example is the sum, over all features, of the sum-of-squares differences of the class mean and the example value.

```python
def distance(self,cl,eg):
 """distance of the eg from the mean of the class""
 return sum((self.class_prediction(ind,cl)-feat(eg))**2 for (ind,feat) in enumerate(self.dataset.input_features))
```

```python
def class_prediction(self,feat_ind,cl):
 """prediction of the class cl on the feature with index feat_ind""
 if self.class_counts[cl] == 0:
 return 0 # there are no examples so we can choose any value
 else:
 return self.feature_sum[feat_ind][cl]/self.class_counts[cl]
```

```python
def class_of_eg(self,eg):
 """class to which eg is assigned""
 return (min((self.distance(cl,eg),cl) for cl in range(self.num_classes)))[1]
```

One step of k-means updates the class_counts and feature_sum. It uses the old values to determine the classes, and so the new values for class_counts and feature_sum. At the end it determines whether the values of these have changes, and then replaces the old ones with the new ones. It returns an indicator of whether the values are stable (have not changed).

```python
def k_means_step(self):
 """Updates the model with one step of k-means.
 Returns whether the assignment is stable.
 """
 new_class_counts = [0]*self.num_classes
 for feat in self.dataset.input_features
```

[http://aipython.org](http://aipython.org)
for eg in self.dataset.train:
    cl = self.class_of_eg(eg)
    new_class_counts[cl] += 1
    for (ind, feat) in enumerate(self.dataset.input_features):
        new_feature_sum[ind][cl] += feat(eg)
    stable = (new_class_counts == self.class_counts) and (self.feature_sum == new_feature_sum)
    self.class_counts = new_class_counts
    self.feature_sum = new_feature_sum
    self.num_iterations += 1
    return stable

def learn(self, n=100):
    """do n steps of k-means, or until convergence""
    i = 0
    stable = False
    while i < n and not stable:
        stable = self.k_means_step()
        i += 1
        self.display(1, "Iteration", self.num_iterations,
                    "class counts: ", self.class_counts, " Stable=", stable)
    return stable

def show_classes(self):
    """sorts the data by the class and prints in order.
    For visualizing small data sets """
    class_examples = [[] for i in range(self.num_classes)]
    for eg in self.dataset.train:
        class_examples[self.class_of_eg(eg)].append(eg)
    print("Class", "Example", sep='\t')
    for cl in range(self.num_classes):
        for eg in class_examples[cl]:
            print(cl, *eg, sep='\t')

def plot_error(self, maxstep=20):
    """Plots the sum-of-squares error as a function of the number of steps""
    plt.ion()
    plt.xlabel("step")
    plt.ylabel("Ave sum-of-squares error")
    train_errors = []
    if self.dataset.test:
        test_errors = []
    for i in range(maxstep):
        self.learn(1)
        train_errors.append(sum(self.distance(self.class_of_eg(eg), eg)
                                 for eg in self.dataset.train))
    if self.dataset.test:
        test_errors.append(sum(self.distance(self.class_of_eg(eg), eg)
                                 for eg in self.dataset.test))
1. **Exercise 10.1** Change `boolean_features = True` flag to allow for numerical features. K-means assumes the features are numerical, so we want to make non-numerical features into numerical features (using characteristic functions) but we probably don’t want to change numerical features into Boolean.

2. **Exercise 10.2** If there are many classes, some of the classes can become empty (e.g., try 100 classes with `carbool.csv`). Implement a way to put some examples into a class, if possible. Two ideas are:

   a. Initialize the classes with actual examples, so that the classes will not start empty. (Do the classes become empty?)

   b. In `class prediction`, we test whether the code is empty, and make a prediction of 0 for an empty class. It is possible to make a different prediction to “steal” an example (but you should make sure that a class has a consistent value for each feature in a loop).

Make your own suggestions, and compare it with the original, and whichever of these you think may work better.
10.2 EM

In the following definition, a class, $c$, is an integer in range $[0, num\_classes)$. $i$ is an index of a feature, so $\text{feat}[i]$ is the $i$th feature, and a feature is a function from tuples to values. $val$ is a value of a feature.

A model consists of 2 lists, which form the sufficient statistics:

- $\text{class\_counts}$ is a list such that $\text{class\_counts}[c]$ is the number of tuples with $\text{class} = c$, where each tuple is weighted by its probability, i.e.,

$$\text{class\_counts}[c] = \sum_{t: \text{class}(t) = c} P(t)$$

- $\text{feature\_counts}$ is a list such that $\text{feature\_counts}[i][val][c]$ is the weighted count of the number of tuples $t$ with $\text{feat}[i](t) = val$ and $\text{class}(t) = c$, each tuple is weighted by its probability, i.e.,

$$\text{feature\_counts}[i][val][c] = \sum_{t: \text{feat}[i](t) = val \land \text{class}(t) = c} P(t)$$

```python
from learnProblem import Data_set, Learner, Data_from_file
import random
import math
import matplotlib.pyplot as plt

class EM_learner(Learner):
 def __init__(self, dataset, num_classes):
 self.dataset = dataset
 self.num_classes = num_classes
 self.class_counts = None
 self.feature_counts = None

The function em_step goes though the training examples, and updates these counts. The first time it is run, when there is no model, it uses random distributions.

```
182  10. Learning with Uncertainty

```python
tpl_class_dist = random_dist(self.num_classes)
for cl in range(self.num_classes):
class_counts[cl] += tpl_class_dist[cl]
for (ind, feat) in enumerate(self.dataset.input_features):
 feature_counts[ind][feat(tple)][cl] += tpl_class_dist[cl]
return class_counts, feature_counts
```

`prob` computes the probability of a class for a tuple, given the current statistics.

\[
P(c \mid tple) \propto P(c) \prod_i P(X_i=tple(i) \mid c)
\]

\[
= \frac{\text{class_counts}[c]}{\text{len(self.dataset)}} \cdot \prod_i \frac{\text{feature_counts}[i][\text{feat}(tple)][c]}{\text{class_counts}[c]}
\]

`len(self.dataset)` is a constant (independent of \(c\)). \(\text{class_counts}[c]\) can be taken out of the product, but needs to be raised to the power of the number of features, and one of them cancels.

```python
def prob(self, tple, class_counts, feature_counts):

 feats = self.dataset.input_features
 unnorm = [prod(feature_counts[i][feat(tple)][c])
 for (i, feat) in enumerate(feats)]/(class_counts[c]**(len(feats)-1))
 for c in range(self.num_classes)
 thesum = sum(unnorm)
 return [un/thesum for un in unnorm]
```

`learn` does \(n\) steps of EM:

```python
def learn(self, n):

 for i in range(n):
 self.class_counts, self.feature_counts = self.em_step(self.class_counts, self.feature_counts)
```

The following is for visualizing the classes. It prints the dataset ordered by the probability of class \(c\).

```python
def show_class(self, c):

 sorted_data = sorted((self.prob(tpl,self.class_counts,self.feature_counts)[c],
 ind, # preserve ordering for equal probabilities
 tpl)
 for (ind, tpl) in enumerate(self.dataset.train))
 for cc, r, tpl in sorted_data:
 print(cc, *tpl, sep='\t')```
The following are for evaluating the classes.

The probability of a tuple can be evaluated by marginalizing over the classes:

\[P(tple) = \sum_c P(c) \prod_i P(X_i = tple(i) | c) \]

\[= \sum_c \frac{cc[c]}{\text{len}(\text{self.dataset})} \prod_i \frac{fc[i][\text{feat}_i(tple)][c]}{cc[c]} \]

where \(cc \) is the class count and \(fc \) is feature count. \(\text{len}(\text{self.dataset}) \) can be distributed out of the sum, and \(cc[c] \) can be taken out of the product:

\[= \frac{1}{\text{len}(\text{self.dataset})} \sum_c \frac{1}{cc[c]^{\text{\# feats} - 1}} \prod_i \frac{fc[i][\text{feat}_i(tple)][c]}{cc[c]} \]

Given the probability of each tuple, we can evaluate the logloss, as the negative of the log probability:

```python
def logloss(self, tple):
    """returns the logloss of the prediction on tple, which is -log(P(tple))
    based on the current class counts and feature counts
    ""
    feats = self.dataset.input_features
    res = 0
    cc = self.class_counts
    fc = self.feature_counts
    for c in range(self.num_classes):
        res += prod(fc[i][feat(tple)][c]
                    for (i, feat) in enumerate(feats))/(cc[c]**(len(feats)-1))
    if res>0:
        return -math.log2(res/len(self.dataset.train))
    else:
        return float("inf") #infinity
```

```python
def plot_error(self, maxstep=20):
    """Plots the logloss error as a function of the number of steps""
    plt.ion()
    plt.xlabel("step")
    plt.ylabel("Ave Logloss (bits)"
    train_errors = []
    if self.dataset.test:
        test_errors = []
    for i in range(maxstep):
        self.learn(1)
        train_errors.append(sum(self.logloss(tple) for tple in self.dataset.train)
                            /len(self.dataset.train))
        if self.dataset.test:
            test_errors.append(sum(self.logloss(tple) for tple in self.dataset.test)
                                /len(self.dataset.test))
    plt.plot(range(1,maxstep+1), train_errors,
```

http://aipython.org
Exercise 10.3
For the EM data, where there are naturally 2 classes, 3 classes does better on the training set after a while than 2 classes, but worse on the test set. Explain why. Hint: look what the 3 classes are. Use
```
em3.show_class(i)
```
for each of the classes $i \in [0, 3]$.

Exercise 10.4
Write code to plot the logloss as a function of the number of classes (from 1 to say 15) for a fixed number of iterations. (From the experience with the existing code, think about how many iterations is appropriate.)
11.1 Minimax

Here we consider two-player zero-sum games. Here a player only wins when another player loses. This can be modeled as where there is a single utility which one agent (the maximizing agent) is trying to minimize and the other agent (the minimizing agent) is trying to minimize.

11.1.1 Creating a two-player game

```python
def __init__(self, name, isMax, value, children):
    self.name = name
    self.isMax = isMax
    self.value = value
    self.allchildren = children

def isLeaf(self):
    return self.allchildren is None
```

The following is a representation of a magic-sum game, where players take turns picking a number in the range $[1, 9]$, and the first player to have 3 numbers that sum to 15 wins. Note that this is a syntactic variant of tic-tac-toe or naughts and crosses. To see this, consider the numbers on a magic square (Figure 11.1); 3 numbers that add to 15 correspond exactly to the winning positions of tic-tac-toe played on the magic square.

Note that we do not remove symmetries. (What are the symmetries? How...
11.1. Minimax

Figure 11.1: Magic Square

do the symmetries of tic-tac-toe translate here?)

class Magic_sum(Node):
 def __init__(self, xmove=True, last_move=None, available=[1,2,3,4,5,6,7,8,9], x=[], o=[]):
 """This is a node in the search for the magic-sum game.
xmove is True if the next move belongs to X.
last_move is the number selected in the last move
available is the list of numbers that are available to be chosen
x is the list of numbers already chosen by x
o is the list of numbers already chosen by o
""
 self.isMax = self.xmove = xmove
 self.last_move = last_move
 self.available = available
 self.x = x
 self.o = o
 self.allchildren = None #computed on demand
 lm = str(last_move)
 self.name = "start" if not last_move else "o="+lm if xmove else "x="+lm

 def children(self):
 if self.allchildren is None:
 if self.xmove:
 self.allchildren = [
 Magic_sum(xmove = not self.xmove,
 last_move = sel,
 available = [e for e in self.available if e is not sel],
 x = self.x+[sel],
 o = self.o)
 for sel in self.available]
 else:
 self.allchildren = [
 Magic_sum(xmove = not self.xmove,
 last_move = sel,
 available = [e for e in self.available if e is not sel],
 x = self.x,
 o = self.o+[sel])
 for sel in self.available]
 return self.allchildren
11. Multiagent Systems

```python
def isLeaf(self):
    """A leaf has no numbers available or is a win for one of the players.
    We only need to check for a win for o if it is currently x's turn,
    and only check for a win for x if it is o's turn (otherwise it would
    have been a win earlier).
    """
    return (self.available == [] or
           (sum_to_15(self.last_move, self.o)
            if self.xmove
            else sum_to_15(self.last_move, self.x)))

def evaluate(self):
    if self.xmove and sum_to_15(self.last_move, self.o):
        return -1
    elif not self.xmove and sum_to_15(self.last_move, self.x):
        return 1
    else:
        return 0

def sum_to_15(last, selected):
    """is true if last, together with two other elements of selected sum to 15.
    """
    return any(last+a+b == 15
               for a in selected if a != last
               for b in selected if b != last and b != a)

11.1.2 Minimax and α-β Pruning

This is a naive depth-first minimax algorithm:

```
11.1. Minimax

```
min_score = score
min_path = C.name, path
return min_score, min_path
```

The following is a depth-first minimax with α-β pruning. It returns the value for a node as well as a best path for the agents.

```
def minimax_alpha_beta(node, alpha, beta, depth=0):
    """node is a Node, alpha and beta are cutoffs, depth is the depth
    returns value, path
    where path is a sequence of nodes that results in the value"
    node.display(2, "*depth, minmax_alpha_beta(" + node.name + ", ", alpha, ", ", beta, ")")
    best=None  # only used if it will be pruned
    if node.isLeaf():
        node.display(2, "*depth, returning leaf value", node.evaluate())
        return
    elif node.isMax:
        for C in node.children():
            score, path = minimax_alpha_beta(C, alpha, beta, depth + 1)
            if score >= beta:  # beta pruning
                node.display(2, "*depth, pruned due to beta=", beta, "C=", C.name)
                return score, None
            if score > alpha:
                alpha = score
            best = C.name, path
        node.display(2, "*depth, returning max alpha", alpha, "best", best)
        return alpha, best
    else:
        for C in node.children():
            score, path = minimax_alpha_beta(C, alpha, beta, depth + 1)
            if score <= alpha:  # alpha pruning
                node.display(2, "*depth, pruned due to alpha=", alpha, "C=", C.name)
                return score, None
            if score < beta:
                beta = score
            best = C.name, path
        node.display(2, "*depth, returning min beta", beta, "best", best)
        return beta, best
```

Testing:

```
from masProblem import fig10_5, Magic_sum, Node
# Node.max_display_level=2  # print detailed trace
# minimax_alpha_beta(fig10_5, -9999, 9999, 0)
# minimax_alpha_beta(Magic_sum(), -9999, 9999, 0)

#To see how much time $\alpha$-$\beta$ pruning can save over minimax, uncomment the following:
## import timeit
## timeit.Timer("minimax(Magic_sum())",setup="from __main__ import minimax, Magic_sum"
```

http://aipython.org Version 0.7.7 August 8, 2019

76 | ##).timeit(number=1)
77 | # trace=False
78 | # timeit.Timer("minimax_alpha_beta(Magic_sum(), -9999, 9999,0)",
79 | # setup="from __main__ import minimax_alpha_beta, Magic_sum"
80 | #).timeit(number=1)
Chapter 12

Reinforcement Learning

12.1 Representing Agents and Environments

When the learning agent does an action in the environment, it observes a \((\text{state, reward})\) pair from the environment. The \text{state} is the world state; this is the fully observable assumption.

An RL environment implements a \text{do(action)} method that returns a \((\text{state, reward})\) pair.

```python
import random
from display import Displayable
from utilities import flip

class RL_env(Displayable):
    def __init__(self, actions, state):
        self.actions = actions  # set of actions
        self.state = state  # initial state

    def do(self, action):
        # do action
        returns state, reward
        raise NotImplementedError("RL_env.do")  # abstract method
```

Here is the definition of the simple 2-state, 2-action party/relax decision.

```python
class Healthy_env(RL_env):
    def __init__(self):
        RL_env.__init__(self,["party","relax"], "healthy")
```

191
def do(self, action):
 """updates the state based on the agent doing action.
 returns state, reward
 """
 if self.state=="healthy":
 if action=="party":
 self.state = "healthy" if flip(0.7) else "sick"
 reward = 10
 else: # action=="relax"
 self.state = "healthy" if flip(0.95) else "sick"
 reward = 7
 else: # self.state=="sick"
 if action=="party":
 self.state = "healthy" if flip(0.1) else "sick"
 reward = 2
 else:
 self.state = "healthy" if flip(0.5) else "sick"
 reward = 0
 return self.state, reward

12.1.1 Simulating an environment from an MDP

Given the definition for an MDP (page 172), Env_from_MDP takes in an MDP and simulates the environment with those dynamics.

Note that the MDP does not contain enough information to simulate a system, because it loses any dependency between the rewards and the resulting state; here we assume the agent always received the average reward for the state and action.
12.1. Representing Agents and Environments

12.1.2 Simple Game

This is for the game depicted in Figure 12.1.

```
import random
from utilities import flip
from rlProblem import RL_env

class Simple_game_env(RL_env):
    xdim = 5
    ydim = 5
    vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
    hwalls = [] # not implemented
    crashed_reward = -1
    prize_locs = [(0,0), (0,4), (4,0), (4,4)]
    prize_appears_prob = 0.3
    prize_reward = 10
```

Figure 12.1: Monster game

```python
# e.g. pick_from_dist([0.3,0.5,0.2],['a','b','c']) should pick 'a' with probability 0.3, etc.
ran = random.random()
i=0
while ran>dist[i]:
    ran -= dist[i]
    i += 1
return values[i]
```
monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
monster_appears_prob = 0.4
monster_reward_when_damaged = -10
repair_stations = [(1,4)]

actions = ["up", "down", "left", "right"]

def __init__(self):
 # State:
 self.x = 2
 self.y = 2
 self.damaged = False
 self.prize = None
 # Statistics
 self.number_steps = 0
 self.total_reward = 0
 self.min_reward = 0
 self.min_step = 0
 self.zero_crossing = 0
 RL_env.__init__(self, Simple_game_env.actions,
 (self.x, self.y, self.damaged, self.prize))
 self.display(2,"","Step","Tot Rew","Ave Rew",sep="\t")

def do(self,action):
 """updates the state based on the agent doing action. returns state,reward """
 reward = 0.0
 # A prize can appear:
 if self.prize is None and flip(self.prize_appears_prob):
 self.prize = random.choice(self.prize_locs)
 # Actions can be noisy
 if flip(0.4):
 actual_direction = random.choice(self.actions)
 else:
 actual_direction = action
 # Modeling the actions given the actual direction
 if actual_direction == "right":
 if self.x==self.xdim-1 or (self.x,self.y) in self.vwalls:
 reward += self.crashed_reward
 else:
 self.x += 1
 elif actual_direction == "left":
 if self.x==0 or (self.x-1,self.y) in self.vwalls:
 reward += self.crashed_reward
 else:
 self.x += -1
 elif actual_direction == "up":
 if self.y==self.ydim-1:
12.1. Representing Agents and Environments

```python
reward += self.crashed_reward
else:
    self.y += 1
elif actual_direction == "down":
    if self.y==0:
        reward += self.crashed_reward
    else:
        self.y += -1
else:
    raise RuntimeError("unknown_direction "+str(direction))

# Monsters
if (self.x,self.y) in self.monster_locs and flip(self.monster_appears_prob):
    if self.damaged:
        reward += self.monster_reward_when_damaged
    else:
        self.damaged = True
if (self.x,self.y) in self.repair_stations:
    self.damaged = False

# Prizes
if (self.x,self.y) == self.prize:
    reward += self.prize_reward
    self.prize = None

# Statistics
self.number_steps += 1
self.total_reward += reward
if self.total_reward < self.min_reward:
    self.min_reward = self.total_reward
    self.min_step = self.number_steps
if self.total_reward>0 and reward>self.total_reward:
    self.zero_crossing = self.number_steps
self.display(2,"",self.number_steps,self.total_reward,
            self.total_reward/self.number_steps,sep="\t")

return (self.x, self.y, self.damaged, self.prize), reward
```

12.1.3 Evaluation and Plotting

```python
import matplotlib.pyplot as plt
def plot_rl(ag, label=None, yplot='Total', step_size=None,
           steps_explore=1000, steps_exploit=1000, xscale='linear'):
    ""
    plots the agent ag
    label is the label for the plot
    yplot is 'Average' or 'Total'
```

http://aipython.org Version 0.7.7 August 8, 2019
step_size is the number of steps between each point plotted
steps_explore is the number of steps the agent spends exploring
steps_exploit is the number of steps the agent spends exploiting
xscale is 'log' or 'linear'

returns total reward when exploring, total reward when exploiting

```
assert yplot in ['Average','Total']
if step_size is None:
    step_size = max(1,(steps_explore+steps_exploit)//500)
if label is None:
    label = ag.label
ag.max_display_level,old_mdl = 1,ag.max_display_level
plt.ion()
plt.xscale(xscale)
plt.xlabel("step")
plt.ylabel(yplot+" reward")
steps = []   # steps
rewards = [] # return
ag.restart()
step = 0
while step < steps_explore:
    ag.do(step_size)
    step += step_size
    steps.append(step)
    if yplot == "Average":
        rewards.append(ag.acc_rewards/step)
    else:
        rewards.append(ag.acc_rewards)
acc_rewards_exploring = ag.acc_rewards
ag.explore,explore_save = 0,ag.explore
while step < steps_explore+steps_exploit:
    ag.do(step_size)
    step += step_size
    steps.append(step)
    if yplot == "Average":
        rewards.append(ag.acc_rewards/step)
    else:
        rewards.append(ag.acc_rewards)
plt.plot(steps,rewards,label=label)
plt.legend(loc="upper left")
plt.draw()
ag.max_display_level = old_mdl
ag.explore=explore_save
return acc_rewards_exploring, ag.acc_rewards-acc_rewards_exploring
12.2 Q Learning

To run the Q-learning demo, in folder “aipython”, load “rlQTest.py”, and copy and paste the example queries at the bottom of that file. This assumes Python 3.

```python
import random
from display import Displayable
from utilities import argmax, flip

class RL_agent(Displayable):
 """An RL_Agent has percepts (s, r) for some state s and real reward r""

class Q_learner(RL_agent):
 """A Q-learning agent has belief-state consisting of state is the previous state q is a {(state,action):value} dict visits is a {(state,action):n} dict. n is how many times action was done in state acc_rewards is the accumulated reward it observes (s, r) for some world-state s and real reward r""

def __init__(self, env, discount, explore=0.1, fixed_alpha=True, alpha=0.2, alpha_fun=lambda k:1/k, qinit=0, label="Q_learner"): """env is the environment to interact with. discount is the discount factor explore is the proportion of time the agent will explore fixed_alpha specifies whether alpha is fixed or varies with the number of visits alpha is the weight of new experiences compared to old experiences alpha_fun is a function that computes alpha from the number of visits qinit is the initial value of the Q's label is the label for plotting"""
 RL_agent.__init__(self)
 self.env = env
 self.actions = env.actions
 self.discount = discount
 self.explore = explore
 self.fixed_alpha = fixed_alpha
 self.alpha = alpha
 q = {} for state in env.states:
 q[state] = {} for action in env.actions:
 q[state][action] = qinit
 self.q = q
 self.visits = {} for state in env.states:
 self.visits[state] = {} for action in env.actions:
 self.visits[state][action] = 0
 self.acc_rewards = {} for state in env.states:
 self.acc_rewards[state] = 0

 def observe(self, state, reward):
 state = self.env.state
 reward = self.env.reward
 self.env = state
 self.env = reward
 self.q[state][self.env] = self.q[state][self.env] + (1 - self.explore) * (reward - self.q[state][self.env])
 self.visits[state][self.env] += 1
 self.acc_rewards[state] += reward
```

http://aipython.org
restart is used to make the learner relearn everything. This is used by the plotter to create new plots.

```python
def restart(self):
 """make the agent relearn, and reset the accumulated rewards
 """
 self.acc_rewards = 0
 self.state = self.env.state
 self.q = {}
 self.visits = {}
```

do takes in the number of steps.

```python
def do(self,num_steps=100):
 """do num_steps of interaction with the environment"
 self.display(2,"s\ta\tr\ts\'tQ")
 alpha = self.alpha
 for i in range(num_steps):
 action = self.select_action(self.state)
 next_state,reward = self.env.do(action)
 if not self.fixed_alpha:
 k = self.visits[(self.state, action)] = self.visits.get((self.state, action),0)+1
 alpha = self.alpha_fun(k)
 self.q[(self.state, action)] = (
 (1-alpha) * self.q.get((self.state, action),self.qinit)
 + alpha * (reward + self.discount
 * max(self.q.get((next_state, next_act),self.qinit)
 for next_act in self.actions)))
 self.display(2,self.state, action, reward, next_state,
 self.q[(self.state, action)], sep='\t')
 self.state = next_state
 self.acc_rewards += reward
```

select_action us used to select the next action to perform. This can be reimplemnted to give a different exploration strategy.

```python
def select_action(self, state):
 """returns an action to carry out for the current agent
 given the state, and the q-function
 """
 if flip(self.explore):
 return random.choice(self.actions)
 else:
 return argmax((next_act, self.q.get((state, next_act),self.qinit))
```
Exercise 12.1  Implement a soft-max action selection. Choose a temperature that works well for the domain. Explain how you picked this temperature. Compare the epsilon-greedy, soft-max and optimism in the face of uncertainty.

Exercise 12.2  Implement SARSA. Hint: it does not do a max in do. Instead it needs to choose next_act before it does the update.

12.2.1 Testing Q-learning

The first tests are for the 2-action 2-state

```python
from rlProblem import Healthy_env
from rlQLearner import Q_learner
from rlPlot import plot_rl

env = Healthy_env()
ag = Q_learner(env, 0.7)
ag_opt = Q_learner(env, 0.7, qinit=100, label="optimistic") # optimistic agent
ag_exp_l = Q_learner(env, 0.7, explore=0.01, label="less explore")
ag_exp_m = Q_learner(env, 0.7, explore=0.5, label="more explore")
ag_disc = Q_learner(env, 0.9, qinit=100, label="disc 0.9")
ag_va = Q_learner(env, 0.7, qinit=100, fixed_alpha=False, alpha_fun=lambda k:10/(9+k),label="alpha=1/k")

ag.max_display_level = 2
ag.do(20)
ag.q # get the learned q-values
ag.max_display_level = 1
ag.do(1000)
ag.q # get the learned q-values
plot_rl(ag,yplot="Average")
plot_rl(ag_opt,yplot="Average")
plot_rl(ag_exp_l,yplot="Average")
plot_rl(ag_exp_m,yplot="Average")
plot_rl(ag_disc,yplot="Average")
plot_rl(ag_va,yplot="Average")

from mdpExamples import mdpt
from rlProblem import Env_from_MDP
envt = Env_from_MDP(mdpt)
agt = Q_learner(envt, 0.8)
agt.do(20)

from rlSimpleEnv import Simple_game_env
senv = Simple_game_env()
sagl = Q_learner(senv,0.9,explore=0.2,fixed_alpha=True,alpha=0.1)
plot_rl(sagl,steps_explore=100000,steps_exploit=100000,label="alpha="+str(sagl.alpha))
sag2 = Q_learner(senv,0.9,explore=0.2,fixed_alpha=False)
plot_rl(sag2,steps_explore=100000,steps_exploit=100000,label="alpha=1/k")
```

http://aipython.org  Version 0.7.7  August 8, 2019
12.3 Model-based Reinforcement Learner

To run the demo, in folder “aipython”, load “rlModelLearner.py”, and copy and paste the example queries at the bottom of that file. This assumes Python 3.

A model-based reinforcement learner builds a Markov decision process model of the domain, simultaneously learns the model and plans with that model.

The model-based reinforcement learner used the following data structures:

- $q[s,a]$ is dictionary that, given a $(s,a)$ pair returns the $Q$-value, the estimate of the future (discounted) value of being in state $s$ and doing action $a$.
- $r[s,a]$ is dictionary that, given a $(s,a)$ pair returns the average reward from doing $a$ in state $s$.
- $t[s,a,s']$ is dictionary that, given a $(s,a,s')$ tuple returns the number of times $a$ was done in state $s$, with the result being state $s'$.
- $visits[s,a]$ is dictionary that, given a $(s,a)$ pair returns the number of times action $a$ was carried out in state $s$.
- $res_{states}[s,a]$ is dictionary that, given a $(s,a)$ pair returns the list of resulting states that have occurred when action $a$ was carried out in state $s$. This is used in the asynchronous value iteration to determine the $s'$ states to sum over.
- $visits_list$ is a list of $(s,a)$ pair that have been carried out. This is used to ensure there is no divide-by-zero in the asynchronous value iteration. Note that this could be constructed from $r$, $visits$ or $res_{states}$ by enumerating the keys, but needs to be a list for random.choice, and we don’t want to keep recreating it.

```python
import random
from rlQLearner import RL_agent
from display import Displayable
from utilities import argmax, flip
class Model_based_reinforcement_learner(RL_agent):
 """A Model-based reinforcement learner
 """
```

http://aipython.org
def __init__(self, env, discount, explore=0.1, qinit=0, updates_per_step=10, label="MBR_learner"):
    """env is the environment to interact with.
discount is the discount factor
explore is the proportion of time the agent will explore
qinit is the initial value of the Q's
updates_per_step is the number of AVI updates per action
label is the label for plotting"""
    RL_agent.__init__(self)
    self.env = env
    self.actions = env.actions
    self.discount = discount
    self.explore = explore
    self.qinit = qinit
    self.updates_per_step = updates_per_step
    self.label = label
    self.restart()

def restart(self):
    """make the agent relearn, and reset the accumulated rewards
    """
    self.acc_rewards = 0
    self.state = self.env.state
    self.q = {} # {(st,action):q_value} map
    self.r = {} # {(st,action):reward} map
    self.t = {} # {(st,action,st_next):count} map
    self.visits = {} # {(st,action):count} map
    self.res_states = {} # {(st,action):set_of_states} map
    self.visits_list = [] # list of (st,action)
    self.previous_action = None

def do(self,num_steps=100):
    """do num_steps of interaction with the environment
    for each action, do updates_per_step iterations of asynchronous value iteration
    """
    for step in range(num_steps):
        pst = self.state # previous state
        action = self.select_action(pst)
        self.state,reward = self.env.do(action)
        self.acc_rewards += reward
        self.t[(pst,action,self.state)] = self.t.get((pst, action,self.state),0)+1
        if (pst,action) in self.visits:
            self.visits[(pst,action)] += 1
            self.r[(pst,action)] += (reward-self.r[(pst,action)])/self.visits[(pst,action)]
            self.res_states[(pst,action)].add(self.state)
        else:
            self.visits[(pst,action)] = 1
```python
self.r[(pst, action)] = reward
self.res_states[(pst, action)] = {self.state}
self.visits_list.append((pst, action))
st, act = pst, action # initial state-action pair for AVI
for update in range(self.updates_per_step):
 self.q[(st, act)] = self.r[(st, act)] + self.discount * (sum(self.t[(st, act, rst)] / self.visits[(st, act)] *
 max(self.q.get((rst, nact), self.qinit) for nact in self.actions)
 for rst in self.res_states[(st, act)]))
st, act = random.choice(self.visits_list)
```

---

```python
def select_action(self, state):
 """returns an action to carry out for the current agent
 given the state, and the q-function
 """
 if flip(self.explore):
 return random.choice(self.actions)
 else:
 return argmax((next_act, self.q.get((state, next_act), self.qinit))
 for next_act in self.actions)
```

```python
from rlQTest import serv # simple game environment
mbl1 = Model_based_reinforcement_learner(serv, 0.9, updates_per_step=10)
plotRL(mbl1, steps_explore=100000, steps_exploit=100000, label="model-based(10)")
mbl2 = Model_based_reinforcement_learner(serv, 0.9, updates_per_step=1)
plotRL(mbl2, steps_explore=100000, steps_exploit=100000, label="model-based(1)")
```

**Exercise 12.3** If there was only one update per step, the algorithm can be made simpler and use less space. Explain how. Does it make it more efficient? Is it worthwhile having more than one update per step for the games implemented here?

**Exercise 12.4** It is possible to implement the model-based reinforcement learner by replacing $q$, $r$, $visits$, $res\_states$ with a single dictionary that returns a tuple $(q, r, v, tm)$ where $q$, $r$ and $v$ are numbers, and $tm$ is a map from resulting states into counts. Does this make the algorithm easier to understand? Does this make the algorithm more efficient?

**Exercise 12.5** If the states and the actions were mapped into integers, the dictionaries could be implemented more efficiently as arrays. This entails an extra step in specifying problems. Implement this for the simple game. Is it more efficient?

### 12.4 Reinforcement Learning with Features

To run the demo, in folder “aipython”, load “rlFeatures.py”, and copy and paste the example queries at the bottom of that file. This assumes Python 3.

[http://aipython.org](http://aipython.org)
12.4.1 Representing Features

A feature is a function from state and action. To construct the features for a domain, we construct a function that takes a state and an action and returns the list of all feature values for that state and action. This feature set is redesigned for each problem.

\( \text{get}_\text{features}(\text{state}, \text{action}) \) returns the feature values appropriate for the simple game.

```python
from rlSimpleEnv import Simple_game_env
from rlProblem import RL_env

def get_features(state, action):
 """returns the list of feature values for the state-action pair""
 assert action in Simple_game_env.actions
 (x, y, d, p) = state
 # f1: would go to a monster
 f1 = monster_ahead(x, y, action)
 # f2: would crash into wall
 f2 = wall_ahead(x, y, action)
 # f3: action is towards a prize
 f3 = towards_prize(x, y, action, p)
 # f4: damaged and action is toward repair station
 f4 = towards_repair(x, y, action, p) if d else 0
 # f5: damaged and towards monster
 f5 = 1 if d and f1 else 0
 # f6: damaged
 f6 = 1 if d else 0
 # f7: not damaged
 f7 = 1-f6
 # f8: damaged and prize ahead
 f8 = 1 if d and f3 else 0
 # f9: not damaged and prize ahead
 f9 = 1 if not d and f3 else 0
 features = [f1, f2, f3, f4, f5, f6, f7, f8, f9]
 for pr in Simple_game_env.prize_locs+[None]:
 if p==pr:
 features += [x, 4-x, y, 4-y]
 else:
 features += [0, 0, 0, 0]
 # fp04 feature for y when prize is at 0,4
 # this knows about the wall to the right of the prize
 if p==(0,4):
 if x==0:
 fp04 = y
 elif y<3:
 fp04 = y
 else:
```

http://aipython.org
fp04 = 4-y
else:
    fp04 = 0
features.append(fp04)
return features

def monster_ahead(x,y,action):
    """returns 1 if the location expected to get to by doing
    action from (x,y) can contain a monster.
    """
    if action == "right" and (x+1,y) in Simple_game_env.monster_locs:
        return 1
    elif action == "left" and (x-1,y) in Simple_game_env.monster_locs:
        return 1
    elif action == "up" and (x,y+1) in Simple_game_env.monster_locs:
        return 1
    elif action == "down" and (x,y-1) in Simple_game_env.monster_locs:
        return 1
    else:
        return 0

def wall_ahead(x,y,action):
    """returns 1 if there is a wall in the direction of action from (x,y).
    This is complicated by the internal walls.
    """
    if action == "right" and (x==Simple_game_env.xdim-1 or (x,y) in Simple_game_env.vwalls):
        return 1
    elif action == "left" and (x==0 or (x-1,y) in Simple_game_env.vwalls):
        return 1
    elif action == "up" and y==Simple_game_env.ydim-1:
        return 1
    elif action == "down" and y==0:
        return 1
    else:
        return 0

def towards_prize(x,y,action,p):
    """action goes in the direction of the prize from (x,y)"
    if p is None:
        return 0
    elif p==(0,4): # take into account the wall near the top-left prize
        if action == "left" and (x>1 or x==1 and y<3):
            return 1
        elif action == "down" and (x>0 and y>2):
            return 1
        elif action == "up" and (x==0 or y<2):
            return 1
        else:
            return 0
    else:
12.4. Reinforcement Learning with Features

```python
px, py = p
if p == (4, 4) and x == 0:
 if (action == "right" and y < 3) or (action == "down" and y > 2) or (action == "up" and y < 2):
 return 1
 else:
 return 0
elif action == "up" and y < py or action == "down" and py < y:
 return 1
elif action == "left" and px < x or action == "right" and x < px:
 return 1
else:
 return 0
def towards_repair(x, y, action):
 """returns 1 if action is towards the repair station. ""
 if action == "up" and (x > 0 and y < 4 or x == 0 and y < 2):
 return 1
 elif action == "left" and x > 1:
 return 1
 elif action == "right" and x == 0 and y < 3:
 return 1
 elif action == "down" and x == 0 and y > 2:
 return 1
 else:
 return 0
def simp_features(state, action):
 """returns a list of feature values for the state-action pair ""
 assert action in Simple_game_env.actions
 (x, y, d, p) = state
 # f1: would go to a monster
 f1 = monster_ahead(x, y, action)
 # f2: would crash into wall
 f2 = wall_ahead(x, y, action)
 # f3: action is towards a prize
 f3 = towards_prize(x, y, action, p)
 return [1, f1, f2, f3]
```

12.4.2 Feature-based RL learner

This learns a linear function approximation of the Q-values. It requires the function `get_features` that given a state and an action returns a list of values for all of the features. Each environment requires this function to be provided.

```python
import random
from rlQLearner import RL_agent
from display import Displayable
```

http://aipython.org

Version 0.7.7
August 8, 2019
from utilities import argmax, flip

class SARSA_LFA_learner(RL_agent):
    """A SARSA_LFA learning agent has
    belief-state consisting of
    state is the previous state
    q is a {(state,action): value} dict
    visits is a {(state,action):n} dict. n is how many times action was done in state
    acc_rewards is the accumulated reward
    """
    def __init__(self, env, get_features, discount, explore=0.2, step_size=0.01,
        winit=0, label="SARSA_LFA"):
        """env is the feature environment to interact with
        get_features is a function get_features(state,action) that returns the list of feature values
        discount is the discount factor
        explore is the proportion of time the agent will explore
        step_size is gradient descent step size
        winit is the initial value of the weights
        label is the label for plotting
        """
        RL_agent.__init__(self)
        self.env = env
        self.get_features = get_features
        self.actions = env.actions
        self.discount = discount
        self.explore = explore
        self.step_size = step_size
        self.winit = winit
        self.label = label
        self.restart()

restart() is used to make the learner relearn everything. This is used by the
plotter to create new plots.

def restart(self):
    """make the agent relearn, and reset the accumulated rewards
    """
    self.acc_rewards = 0
    self.state = self.env.state
    self.features = self.get_features(self.state, list(self.env.actions)[0])
    self.weights = [self.winit for f in self.features]
    self.action = self.select_action(self.state)

do takes in the number of steps.

def do(self,num_steps=100):
    """do num_steps of interaction with the environment""
    self.display(2,"s	a	r	s/Var	Q	delta")

http://aipython.org  Version 0.7.7  August 8, 2019
for i in range(num_steps):
    next_state, reward = self.env.do(self.action)
    self.acc_rewards += reward
    next_action = self.select_action(next_state)
    feature_values = self.get_features(self.state, self.action)
    oldQ = dot_product(self.weights, feature_values)
    nextQ = dot_product(self.weights, self.get_features(next_state, next_action))
    delta = reward + self.discount * nextQ - oldQ
    for i in range(len(self.weights)):
        self.weights[i] += self.step_size * delta * feature_values[i]
    self.display(2, self.state, self.action, reward, next_state,
                 dot_product(self.weights, feature_values), delta, sep='\t')
    self.state = next_state
    self.action = next_action

def select_action(self, state):
    """returns an action to carry out for the current agent
    given the state, and the q-function.
    This implements an epsilon-greedy approach
    where self.explore is the probability of exploring.
    """
    if flip(self.explore):
        return random.choice(self.actions)
    else:
        return argmax((next_act, dot_product(self.weights,
                                             self.get_features(state, next_act)))
                       for next_act in self.actions)

def show_actions(self, state=None):
    """prints the value for each action in a state.
    This may be useful for debugging.
    """
    if state is None:
        state = self.state
    for next_act in self.actions:
        print(next_act, dot_product(self.weights, self.get_features(state, next_act)))

def dot_product(l1, l2):
    return sum(e1*e2 for (e1, e2) in zip(l1, l2))
Exercise 12.6  How does the step-size affect performance? Try different step sizes (e.g., 0.1, 0.001, other sizes in between). Explain the behaviour you observe. Which step size works best for this example. Explain what evidence you are basing your prediction on.


Exercise 12.8  For each of the following first predict, then plot, then explain the behaviour you observed:

(a) SARSA_LFA, Model-based learning (with 1 update per step) and Q-learning for 10,000 steps 20% exploring followed by 10,000 steps 100% exploiting
(b) SARSA_LFA, model-based learning and Q-learning for
   i) 100,000 steps 20% exploring followed by 100,000 steps 100% exploit
   ii) 10,000 steps 20% exploring followed by 190,000 steps 100% exploit
(c) Suppose your goal was to have the best accumulated reward after 200,000 steps. You are allowed to change the exploration rate at a fixed number of steps. For each of the methods, which is the best position to start exploiting more? Which method is better? What if you wanted to have the best reward after 10,000 or 1,000 steps?

Based on this evidence, explain when it is preferable to use SARSA_LFA, Model-based learner, or Q-learning.

Important: you need to run each algorithm more than once. Your explanation should include the variability as well as the typical behavior.

12.5 Learning to coordinate - UNFINISHED!!!!

Coordinating agents should implement the agent architecture. However, in that architecture, an agent calls the environment. That architecture was chosen because it was simple. However, it does not really work when there are multiple agents. In such cases, a coroutining architecture is more appropriate.

We assume there is an x-player, and a y-player. game[xa][ya][ag] gives value to the agent ag (ag=for the x-player) of the strategy of the x-agent doing xa and the y-agent doing ya.
Chapter 13

Relational Learning

13.1 Collaborative Filtering


This assumes the form of the dataset from movielens [http://grouplens.org/datasets/movielens/](http://grouplens.org/datasets/movielens/). The rating are a set of \((user, item, rating, timestamp)\) tuples.

```python
import random
import matplotlib.pyplot as plt
import urllib.request
from learnProblem import Learner
from display import Displayable

class CF_learner(Learner):
 def __init__(self,
 rating_set, # a Rating_set object
 rating_subset = None, # subset of ratings to be used as training ratings
 test_subset = None, # subset of ratings to be used as test ratings
 step_size = 0.01, # gradient descent step size
 reglz = 1.0, # the weight for the regularization terms
 num_properties = 10, # number of hidden properties
 property_range = 0.02 # properties are initialized to be between -property_range and property_range
):
 self.rating_set = rating_set
 self.ratings = rating_subset or rating_set.training_ratings # whichever is not empty
 if test_subset is None:
```
```python
 self.test_ratings = self.rating_set.test_ratings
 else:
 self.test_ratings = test_subset
 self.step_size = step_size
 self.reglz = reglz
 self.num_properties = num_properties
 self.num_ratings = len(self.ratings)
 self.ave_rating = (sum(r for (u,i,r,t) in self.ratings)
 /self.num_ratings)
 self.users = {u for (u,i,r,t) in self.ratings}
 self.items = {i for (u,i,r,t) in self.ratings}
 self.user_bias = {u:0 for u in self.users}
 self.item_bias = {i:0 for i in self.items}
 self.user_prop = {u:[random.uniform(-property_range,property_range)
 for p in range(num_properties)]
 for u in self.users}
 self.item_prop = {i:[random.uniform(-property_range,property_range)
 for p in range(num_properties)]
 for i in self.items}
 self.zeros = [0 for p in range(num_properties)]
 self.iter=0

 def stats(self):
 self.display(1,"ave sumsq error of mean for training=",
 sum((self.ave_rating-rating)**2 for (user,item,rating,timestamp)
 in self.ratings)/len(self.ratings))
 self.display(1,"ave sumsq error of mean for test=",
 sum((self.ave_rating-rating)**2 for (user,item,rating,timestamp)
 in self.test_ratings)/len(self.test_ratings))
 self.display(1,"error on training set",
 self.evaluate(self.ratings))
 self.display(1,"error on test set",
 self.evaluate(self.test_ratings))

 learn carries out num_iter steps of gradient descent.

 def prediction(self,user,item):
 """Returns prediction for this user on this item.
 The use of .get() is to handle users or items not in the training set.
 """
 return (self.ave_rating
 + self.user_bias.get(user,0) #self.user_bias[user]
 + self.item_bias.get(item,0) #self.item_bias[item]
 + sum([self.user_prop.get(user,self.zeros)[p]*self.item_prop.get(item,self.zeros)[p]
 for p in range(self.num_properties)]))

 def learn(self, num_iter = 50):
 """do num_iter iterations of gradient descent.""
 for i in range(num_iter):
 self.iter += 1
```

http://aipython.org  Version 0.7.7  August 8, 2019
13.1. Collaborative Filtering

13.1.1 Alternative Formulation
An alternative formulation is to regularize after each update.

13.1.2 Plotting

```
def plot_predictions(self, examples="test"):

 examples is either "test" or "training" or the actual examples
```
if examples == "test":
    examples = self.test_ratings
elif examples == "training":
    examples = self.ratings
plt.ion()
plt.xlabel("prediction")
plt.ylabel("cumulative proportion")
self.actuals = [[] for r in range(0,6)]
for (user,item,rating,timestamp) in examples:
    self.actuals[rating].append(self.prediction(user,item))
for rating in range(1,6):
    self.actuals[rating].sort()
    numrat = len(self.actuals[rating])
yvals = [i/numrat for i in range(numrat)]
plt.plot(self.actuals[rating], yvals, label="rating=\n"+str(rating))
plt.legend()
plt.draw()

This plots a single property. Each (user, item, rating) is plotted where the x-value is the value of the property for the user, the y-value is the value of the property for the item, and the rating is plotted at this (x, y) position. That is, rating is plotted at the (x, y) position (p(user), p(item)).

---

def plot_property(self, p, plot_all=False, num_points=200):
    """plot some of the user-movie ratings,
    if plot_all is true
    num_points is the number of points selected at random plotted.
    """
    plt.ion()
    plt.xlabel("users")
    plt.ylabel("items")
    user_vals = [self.user_prop[u][p] for u in self.users]
    item_vals = [self.item_prop[i][p] for i in self.items]
    plt.axis([min(user_vals)-0.02, max(user_vals)+0.05, min(item_vals)-0.02, max(item_vals)+0.05])
    if plot_all:
        for (u,i,r,t) in self.ratings:
            plt.text(self.user_prop[u][p], http://aipython.org Version 0.7.7 August 8, 2019
13.1. Collaborative Filtering

```python
 self.item_prop[i][p],
 str(r))
else:
 for i in range(num_points):
 (u,i,r,t) = random.choice(self.ratings)
 plt.text(self.user_prop[u][p],
 self.item_prop[i][p],
 str(r))
plt.show()

13.1.3 Creating Rating Sets

A rating set can be read from the Internet or read from a local file. The default
is to read the Movielens 100K dataset from the Internet. It would be more
efficient to save the dataset as a local file, and then set local_file = True, as then
it will not need to download the dataset every time the program is run.

```
Sometimes it is useful to plot a property for all \((user, item, rating)\) triples. There are too many such triples in the data set. The method \texttt{create\_top\_subset} creates a much smaller dataset where this makes sense. It picks the most rated items, then picks the users who have the most ratings on these items. It is designed for depicting the meaning of properties, and may not be useful for other purposes.

```python
def create_top_subset(self, num_items = 30, num_users = 30):
 """Retruns a subset of the ratings by picking the most rated items,
 and then the users that have most ratings on these, and then all of the
 ratings that involve these users and items.
 """
 items = {item for (user,item,rating,timestamp) in self.training_ratings}
 item_counts = {i:0 for i in items}
 for (user,item,rating,timestamp) in self.training_ratings:
 item_counts[item] += 1
 items_sorted = sorted((item_counts[i],i) for i in items)
 top_items = items_sorted[-num_items:]
 set_top_items = set(item for (count, item) in top_items)
 users = {user for (user,item,rating,timestamp) in self.training_ratings}
 user_counts = {u:0 for u in users}
 for (user,item,rating,timestamp) in self.training_ratings:
 if item in set_top_items:
 user_counts[user] += 1
 users_sorted = sorted((user_counts[u],u) for u in users)
 top_users = users_sorted[-num_users:]
 set_top_users = set(user for (count, user) in top_users)
 used_ratings = [(user,item,rating,timestamp) for (user,item,rating,timestamp) in self.training_ratings
 if user in set_top_users and item in set_top_items]
 return used_ratings
```

```
movielens = Rating_set()
learner0 = CF_learner(movielens, num_properties = 1)
#learner0.learn(50)
learner0.plot_predictions(examples = "training")
learner0.plot_predictions(examples = "test")
#learner0.plot_property(0)
#movielens_subset = movielens.create_top_subset(num_items = 20, num_users = 20)
#learner1 = CF_learner(movielens, rating_subset=movielens_subset, test_subset=[]) , num_properties=1)
#learner1.learn(1000)
```
13.1. Collaborative Filtering

"learner1.plot_property(0, plot_all=True)"

http://aipython.org
Version 0.7.7
August 8, 2019
Index

α-β pruning, 189
A* search, 38
A* Search, 41
action, 81
agent, 19, 191
argmax, 16
assignment, 50, 139
assumable, 78
augmented feature, 111
batched stochastic gradient descent, 127
blocks world, 83
Boolean feature, 103
botton-up proof, 75
branch-and-bound search, 44

class
   Action_instance, 95
   Agent, 19
   Arc, 32
   Askable, 73
   Assumable, 78
   Belief_network, 143
   Boosted_dataset, 133
   Boosting_lerner, 133
   Branch_and_bound, 44
   CF_lerner, 209
   CSP, 50
   CSP_from_STrips, 92
   Clause, 73
   Con_solver, 58
   Constraint, 49
   DBN, 164
   DBN_VE_filter, 165
   DBN_variable, 163
   DT_lerner, 116
   Data_from_file, 107
   Data_set, 104
   Data_set_augmented, 111
   Data_set_random, 115
   DecisionNetwork, 168
   DecisionVariable, 167
   Displayable, 15
   EM_lerner, 181
   Env_from_MDP, 192
   Environment, 20
   Factor, 138
   Factor_DF, 169
   Factor_max, 169
   Factor_observed, 140
   Factor_rename, 143
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor_stored</td>
<td>140</td>
</tr>
<tr>
<td>Factor_sum</td>
<td>141</td>
</tr>
<tr>
<td>Forward_STRIPS</td>
<td>86</td>
</tr>
<tr>
<td>FrontierPQ</td>
<td>40</td>
</tr>
<tr>
<td>Gibbs_sampling</td>
<td>155</td>
</tr>
<tr>
<td>Graphical_model</td>
<td>143</td>
</tr>
<tr>
<td>HMM</td>
<td>157</td>
</tr>
<tr>
<td>HMM_VE_filter</td>
<td>158</td>
</tr>
<tr>
<td>HMM_particle_filter</td>
<td>160</td>
</tr>
<tr>
<td>Healthy_env</td>
<td>191</td>
</tr>
<tr>
<td>Inference_method</td>
<td>144</td>
</tr>
<tr>
<td>KB</td>
<td>74</td>
</tr>
<tr>
<td>KBA</td>
<td>78</td>
</tr>
<tr>
<td>K_fold_dataset</td>
<td>120</td>
</tr>
<tr>
<td>K_means_learner</td>
<td>177</td>
</tr>
<tr>
<td>Layer</td>
<td>128</td>
</tr>
<tr>
<td>Learner</td>
<td>113</td>
</tr>
<tr>
<td>Likelihood_weighting</td>
<td>151</td>
</tr>
<tr>
<td>Linear_complete_layer</td>
<td>129</td>
</tr>
<tr>
<td>Linear_learner</td>
<td>122</td>
</tr>
<tr>
<td>Linear_learner_bsgd</td>
<td>127</td>
</tr>
<tr>
<td>MDP</td>
<td>172</td>
</tr>
<tr>
<td>Magic_sum</td>
<td>187</td>
</tr>
<tr>
<td>Model_based_reinforcement_learner</td>
<td>200</td>
</tr>
<tr>
<td>NN</td>
<td>130</td>
</tr>
<tr>
<td>Node</td>
<td>185</td>
</tr>
<tr>
<td>POP_node</td>
<td>96</td>
</tr>
<tr>
<td>POP_search_from_STRIPS</td>
<td>97</td>
</tr>
<tr>
<td>Particle_filtering</td>
<td>152</td>
</tr>
<tr>
<td>Path</td>
<td>34</td>
</tr>
<tr>
<td>Planning_problem</td>
<td>82</td>
</tr>
<tr>
<td>Plot_env</td>
<td>28</td>
</tr>
<tr>
<td>Plot_prices</td>
<td>22</td>
</tr>
<tr>
<td>Prob</td>
<td>142</td>
</tr>
<tr>
<td>Q_learner</td>
<td>197</td>
</tr>
<tr>
<td>RL_agent</td>
<td>197</td>
</tr>
<tr>
<td>RL_env</td>
<td>191</td>
</tr>
<tr>
<td>Rating_set</td>
<td>213</td>
</tr>
<tr>
<td>ReLU_layer</td>
<td>130</td>
</tr>
<tr>
<td>Regression_STRIPS</td>
<td>90</td>
</tr>
<tr>
<td>Rejection_sampling</td>
<td>150</td>
</tr>
<tr>
<td>Rob_body</td>
<td>24</td>
</tr>
<tr>
<td>Rob_env</td>
<td>23</td>
</tr>
<tr>
<td>Rob_middle_layer</td>
<td>26</td>
</tr>
<tr>
<td>Rob_top_layer</td>
<td>27</td>
</tr>
<tr>
<td>Runtime_distribution</td>
<td>70</td>
</tr>
<tr>
<td>SARSA_LFA_learner</td>
<td>205</td>
</tr>
<tr>
<td>SLSearcher</td>
<td>64</td>
</tr>
<tr>
<td>STRIPS_domain</td>
<td>82</td>
</tr>
<tr>
<td>Sampling_inference_method</td>
<td>149</td>
</tr>
<tr>
<td>Search_from_CSP</td>
<td>56</td>
</tr>
<tr>
<td>Search_problem</td>
<td>31</td>
</tr>
<tr>
<td>Search_problem_from_explicit_graph</td>
<td>33</td>
</tr>
<tr>
<td>Search_with_Ac_from_CSP</td>
<td>62</td>
</tr>
<tr>
<td>Searcher</td>
<td>39</td>
</tr>
<tr>
<td>SearcherMPP</td>
<td>43</td>
</tr>
<tr>
<td>Sigmoid_layer</td>
<td>130</td>
</tr>
<tr>
<td>Simple_game_env</td>
<td>193</td>
</tr>
<tr>
<td>State</td>
<td>85</td>
</tr>
<tr>
<td>Strips</td>
<td>81</td>
</tr>
<tr>
<td>Subgoal</td>
<td>89</td>
</tr>
<tr>
<td>TP_agent</td>
<td>22</td>
</tr>
<tr>
<td>TP_env</td>
<td>20</td>
</tr>
<tr>
<td>Updatable_priority_queue</td>
<td>69</td>
</tr>
<tr>
<td>Utility</td>
<td>167</td>
</tr>
<tr>
<td>VE</td>
<td>145</td>
</tr>
<tr>
<td>VE_DN</td>
<td>168</td>
</tr>
<tr>
<td>Variable</td>
<td>137</td>
</tr>
<tr>
<td>clause</td>
<td>73</td>
</tr>
<tr>
<td>collaborative filtering</td>
<td>209</td>
</tr>
<tr>
<td>condition</td>
<td>49</td>
</tr>
<tr>
<td>consistency algorithms</td>
<td>58</td>
</tr>
<tr>
<td>constraint</td>
<td>49</td>
</tr>
<tr>
<td>constraint satisfaction problem</td>
<td>49</td>
</tr>
<tr>
<td>copy_with_assign</td>
<td>61</td>
</tr>
<tr>
<td>cross validation</td>
<td>120</td>
</tr>
<tr>
<td>CSP</td>
<td>49</td>
</tr>
<tr>
<td>consistency</td>
<td>58</td>
</tr>
<tr>
<td>domain splitting</td>
<td>60</td>
</tr>
<tr>
<td>search</td>
<td>56</td>
</tr>
<tr>
<td>stochastic local search</td>
<td>63</td>
</tr>
<tr>
<td>currying</td>
<td>51</td>
</tr>
<tr>
<td>data set</td>
<td>103</td>
</tr>
<tr>
<td>DBN (dynamic belief network)</td>
<td>163</td>
</tr>
<tr>
<td>decision network</td>
<td>167</td>
</tr>
<tr>
<td>decision tree learning</td>
<td>116</td>
</tr>
<tr>
<td>deep learning</td>
<td>128</td>
</tr>
</tbody>
</table>
Index

display, 15
Displayable, 15
domain splitting, 60, 62
dynamic belief network, 163

EM, 181
environment, 19, 20, 191
example, 103
explicit graph, 32

factor, 138
factor times, 141
feature, 103
file

agentEnv.py, 23
agentMiddle.py, 26
agentTop.py, 27
agents.py, 19
cspConsistency.py, 58
cspExamples.py, 51
cspProblem.py, 49
cspSLS.py, 64
cspSearch.py, 56
decnNetworks.py, 167
display.py, 15
learnBoosting.py, 133
learnCoordinate.py, 208
learnCrossValidation.py, 120
learnDT.py, 116
learnEM.py, 181
learnKMeans.py, 177
learnLinear.py, 122
learnLinearBSGD.py, 127
learnNN.py, 128
learnNoInputs.py, 114
learnProblem.py, 103
logicAssumables.py, 78
logicBottomUp.py, 75
logicProblem.py, 73
logicTopDown.py, 77
masMiniMax.py, 188
masProblem.py, 185
mdpExamples.py, 172
mdpProblem.py, 172
probDBN.py, 163
probFactors.py, 138
probGraphicalModels.py, 143
probHMM.py, 157
probMCMC.py, 155
probStochSim.py, 155
probVE.py, 145
probVariables.py, 137
pythonDemo.py, 11
relnCollFilt.py, 209
rlFeatures.py, 205
rlModelLearner.py, 200
rlPlot.py, 195
rlProblem.py, 191
rlQLearner.py, 197
rlQTest.py, 199
rlSimpleEnv.py, 193
rlSimpleGameFeatures.py, 203
searchBranchAndBound.py, 44
searchGeneric.py, 39
searchMPP.py, 43
searchProblem.py, 31
searchTest.py, 46
stripsCSPPlanner.py, 92
stripsForwardPlanner.py, 85
stripsHeuristic.py, 87
stripsPOP.py, 95
stripsProblem.py, 81
stripsRegressionPlanner.py, 89
utilities.py, 16

filtering, 158, 160
forward planning, 85
game, 185
Gibbs sampling, 155

graphical model, 143

heuristic planning, 87, 92
hidden Markov model, 157
hierarchical controller, 23
HMM

exact filtering, 158
particle filtering, 160
HMM (hidden Markov models), 157
importance sampling, 152
ipython, 8

http://aipython.org
k-means, 177
knowledge base, 74
learner, 113
learning, 103–135, 177–184, 191–215
batched stochastic gradient descent, 127
cross validation, 120
decision tree, 116
deep learning, 128
EM, 181
k-means, 177
linear regression, 122
linear classification, 122
neural network, 128
no inputs, 113
reinforcement, 191–208
relational, 209
supervised, 103–135
with uncertainty, 177–184
likelihood weighting
linear regression, 122
linear classification, 122
magic square, 186
magic-sum game, 186
Markov Chain Monte Carlo, 155
Markov decision process, 172
max_display_level, 15
MCMC, 155
MDP, 172, 192
method
consistent, 51
holds, 50
maxh, 88
zero, 86
minimax, 185
minimax algorithm, 188
minsets, 79
model-based reinforcement learner, 200
multiagent system, 185
multiple path pruning, 43
naughts and crosses, 186
neural network, 128
NotImplementedError, 19
partial-order planner, 95
particle filtering, 152
HMMs, 160
planning, 81, 101, 167–175
CSP, 92
decision network, 167
forward, 85
MDP, 172
partial order, 95
regression, 89
with certainty, 81–101
with learning, 200
with uncertainty, 167–175
plotting
agents in time, 22
reinforcement learning, 195
robot environment, 28
runtime distribution, 70
stochastic simulation, 154
predictor, 105
probability, 137
proof
down-bottom, 75
top-down, 77
propagation, 75
Python, 7
Q learning, 197
regression planning, 89
reinforcement learning, 191–208
environment, 191
feature-based, 202
model-based, 200
Q-learning, 197
rejection sampling, 150
relational learning, 209
resampling, 153
robot
body, 24
environment, 23
middle layer, 26
plotting, 28
top layer, 27
http://aipython.org
Index

robot delivery domain, 82
runtime, 13
runtime distribution, 70
sampling, 147
  importance sampling, 152
  belief networks, 149
  likelihood weighting, 151
  particle filtering, 152
  rejection, 150
scope, 49
search, 31
  A*, 38
  branch-and-bound, 44
  multiple path pruning, 43
  search_with_any_conflict, 66
  search_with_var_pq, 67
sigmoid, 124
stochastic local search, 63
  any-conflict, 66
  two-stage choice, 66
stochastic simulation, 147
test
  SLS, 71
tic-tac-toe, 186
top-down proof, 77
uncertainty, 137
unit test, 42, 55, 76, 77
updatable priority queue, 68
value iteration, 173
variable, 49, 137
variable elimination (VE), 145
VE, 145
visualize, 15
yield, 12